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Abstract. 
 
 
The hereby paper presents an overview of the current interpretation of decoherence in 
quantum theory, at the same time firmly stating that decoherence can be successfully fought 
against by means of the quantum error-correcting codes developed in the recent years. While 
decoherence itself is but a natural transition from quantum to classical, explaining the so 
disputed quantum origins of the classical world, its effects have to be combated or severely 
diminished if revolutionary techniques such as quantum communication or quantum 
computation are to be ever implemented. We will argue and try to prove by reference to 
existing leading research papers that quantum error-correction codes are a viable solution for 
the decoherence problem in particular settings. As a clear-cut example we tackle the five-
qubit quantum circuit described by Shor, DiVincenzo and Terhal. Full generalization is in our 
view a simple problem of time as the theory describing it exists already and is continuously 
revised by top scientists. In this sense the general QECC framework developed by Knill and 
Laflamme is thoroughly analyzed and commented upon.   
 
 
 
1. Scene-Setting:  Decoherence as Transition Concept between Quantum and Classical  
 
 
If we were to consider decoherence in its full generali ty1, we would concisely define it as the 
phenomenon by which quantum mechanical systems behave as though they are described by 
classical probabili ty theory [2]. In other words a given quantum mechanical system exhibits 
decoherence when all typical features of quantum mechanical probabili ty are suppressed. In 
the remaining of this section we will t ry to clarify and detail this definition. 
 
It seems to us nowadays that the quantum origin of the classical world was extremely 
diff icult to imagine for the forefathers of quantum theory. Thus Bohr, in his formulation of 

                                                           
1 Recent papers coin two distinct types of decoherence: the “environment induced decoherence” (or the very 
popular type of decoherence, usually referred to in the literature, concerning the “classicalisation” of a quantum 
system as a process that takes place in time), on the one hand, and the decoherence referring to the situation 
where a coarse-grained description of the system can be given in terms of classical probabili ty theory, on the 
other hand. The former category of decoherence is considered only a particular case of the more general latter 
type. Thus by “ full generali ty” we make a direct reference to the second type.  
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the Copenhagen theory, was willi ng to postulate the independent existence of the two 
worlds, while de Broglie or even Einstein to a lesser extent, were apparently willi ng to 
completely give up the quantum theory and search for something with more fundamental 
classical underpinnings [7]. We are of course aware now that the source of these problems 
was the quantum principle of superposition that exponentially expands the set of the available 
states to all  conceivable superposition states. Hence, to cite maybe the most famous example, 
coherent superpositions of dead and alive cats have, in the light of the quantum theory, the 
same right to exist as either of the two classical alternatives. Within the Hilbert space 
describing a given state classically “ legal” states are exceptional: the set of all states in the 
Hilbert space is enormous as compared with the size of the set of states where one finds 
classical systems. As an ironically enough consequence, it is a fact of li fe that classical 
objects are only found in a very small subset of all possible (and in principle, allowed) states. 
So one has to explain this apparent “super-selection” or “einselection” [6] rule that prevents 
the existence of most states in the Hilbert space of certain physical systems. It is decoherence 
that accounts for this experimental fact of li fe. 
 
Decoherence is originated in the interaction between the system and its environment. In other 
words an entanglement between the state of the quantum system in question and the 
environmental degrees of freedom occurs [3]. As a consequence, the quantum system will 
evolve from a pure quantum state to a mixture of quantum states with no set phase difference 
between them. The problem is simply inherent to all quantum systems, as no technique has 
been so far developed in order to entirely isolate defined systems from their environment. 
The single truly isolated system is the whole macroscopic Universe itself, as the highest 
possible enlarged system to contain the information2. Otherwise, the isolation is especially 
hard or impossible to conceive when referring to macroscopic dimensions within our 
Universe: an environmental record-keeping wil l enter into function as soon as we try to 
measure a certain property of such an object3. Under a variety of conditions, particularly easy 
to satisfy for macroscopic objects, decoherence leads to the einselection of a small subset of 
quasi-classical states from within the enormous Hilbert space. Classicali ty is thus an 
emergent property induced in the system by its interaction with the environment. Arbitrary 
superpositions are immediately dismissed and a preferred set of states emerges; these 
preferred states are the classical states. They correspond to the definite readings of the 
apparatus pointer in quantum measurements and to the points in the phase space of a classical 
dynamical system. 
 
 
 
                                                           
2 The standard strategy to ensure isolation was to enlarge a system, that is to include the immediate environment 
 
3 One of the traditional examples used by quantum physics theorists in underlying the environmental record-
keeping is the model of the  “billi ard ball ” . Suppose we want to know the position of a billi ard ball (for all 
practical purposes, this can be any macroscopic object) to within some degree of precision, in the quantum 
universe. In formulating our question we ignore the quantum state of everything else in the cosmos. Subject to a 
certain condition we will use, we can use the possible positions of the billi ard ball to partition the set of possible 
states of everything else into equivalence classes with respect to each of which the billi ard ball i s in a different 
position. The proviso enabling this partitioning is exactly that there must be a good degree of correlation 
between the state of the billi ard ball and the state of everything else. That is, given the cosmos in a pure 
quantum state, we cannot separate off the billi ard ball and be left with a billi ard ball i n a pure state and a rest-of-
the cosmos in a pure state. Each subsystem is a mixed state and there are non-separable correlations between the 
two. In other words, the environment (the rest of the cosmos) contains information about the state of the billi ard 
ball—just as the billi ard ball contains information about its environment. 
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2. Fighting against Decoherence: QECC 
 
 
2.1. Decoherence, an Obstacle to Quantum Computation and Communication 
 
 
Within the past few years, quantum computation and communication have undergone a 
dramatic evolution. From being subjects of primarily and solely academic interest, they have 
become fields having an extreme potential for revolutionizing computer science and 
cryptography, as well as an impact on issues of national security, and even potentially 
commercial applications, to mention only a few of the recent practical functions [1]. This has 
resulted not only from the development of new algorithms such as quantum factoring, but 
also as a consequence of experimental work on implementations of individual quantum gates 
and of quantum cryptography. Unfortunately, the quantum states required to carry out a 
computation are more than sensitive to the imperfections of the hardware, and above all , to 
the decoherence caused by the inherent interaction with the environment4. 
 
It is by now clear that decoherence is a process having a crucial role in the quantum-to-
classical transition. We find very interesting to pinpoint and discuss this transition; 
nonetheless in most of the cases physicists are interested in understanding the specific causes 
of decoherence just because we want to get rid of it. Decoherence is responsible for washing 
out the quantum interference effects we would very much want to see as a signal in some 
experiments [5], [6].  In particular, this is the type of situation that we are facing in quantum 
computation and in the physics of quantum information on a more generalized scale. A 
quantum computer is nothing but a gigantic interferometer whose wave function explores an 
exponential number of classical computations simultaneously: while conventional computers 
store data as bits with a value of 0 or 1, a quantum computer stores information in two-level 
quantum states, such as the spin of a proton. The crucial point is that these quantum states, 
known as qubits, can become “entangled” with each other, so that N qubits can exist in 2N 

different states [3]. It is therefore more than necessary that coherence between branches of 
the computer wave function is maintained, as the existence of quantum interference between 
these branches is the primary reason why these computers can outperform their classical 
counterparts.  
 
In few words, decoherence can cause a quantum computer to lose two of its key properties: 
entanglement between the qubits and interference phenomena. Specific examples describing 
both these implications as well as physical causes of decoherence for the two most popular 
types of quantum computers5 are successfully and in detail discussed by David DiVincenzo 
and Barbara Terhal in  [3], pages 53-54. Considering a reference to their work as suff icient 
for our purpose and also taking into consideration the limited amount of space and time for 
this paper, we will not insist more on these specific issues, nonetheless acknowledging their 
overwhelming importance. The conclusion of the short overview herein is that decoherence is 
a major problem within quantum computation and quantum information in general, therefore 

                                                           
4 See the first Section for a more detailed discussion on the “environmental record-keeping” in the case of any 
quantum system 
5 The most popular quantum systems considered as potential quantum computers are the quantum computer 
composed of trapped ions (originally proposed in 1995 by I. Cirac and P. Zoller at the University of Innsbruck 
in Austria) and the quantum computer based on nuclear magnetic resonance, NMR, from aqueous solutions of 
organic molecules (originall y proposed by I. Chuang from Stanford and N. Gershenfeld and D. Cory from MIT) 
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any measures aimed at reducing or eliminating decoherence effects are 
ineluctable for future progress in these areas. 
 
 
 
2.2 Can We Correct Decoherence Induced Errors?  
 
 
An obvious way of try to prevent decoherence from damaging quantum states should be by 
now straightforward: reducing the strength of the coupling between the system and its 
environment. Nonetheless, it is never possible to reduce this coupling to zero and eliminate 
decoherence in this way as it has been argued along the previous sections of this paper. 
Unless noise is totally eliminated, no hope in this sense. Hence, a radically different approach 
is required.  
 
To ensure that the fragili ty of quantum states does not destroy our ability to extract the 
desired interference pattern requires techniques for correcting errors. The general idea would 
be to find some error-correcting procedure so that in the eventuali ty of an error corrupting the 
encoded quantum state, the initial quantum state is reconstructed. But before going into 
deeper details, one dilemma should be settled: does error correction exist at all for quantum 
states? Is this a reasonable issue to even start with? 
 
Many researchers doubted that error correction could at all exist. Most objections centered on 
two straightforward arguments. Firstly, decoherence would irreversibly destroy the 
information contained in the quantum state, so the original state could not be recovered. 
Secondly, the quantum state is analogue—generally specified by a set of complex numbers—
which suggests that the errors caused by decoherence come in an almost infinite variety. At 
least some of these errors would simply rotate the system into a different quantum state and 
so they could not be detected as errors [3]. Moreover and connected to the previously stated 
arguments, it was generally believed that to perform an error-correction step, knowledge of 
the exact state of the computer is required. Such knowledge would unavoidably destroy the 
quantum mechanical properties of the state [1], [7].  Clearly all these arguments had their 
point and it seemed for a while that is useless to even think about quantum error-correction. 
Luckily enough, things evolved positively. 
 
Let us begin by noting that some of the present papers [1] rightfully draw an interesting 
parallel between the state of the art the quantum computation today and that of classical 
computers in the 40’s. At that time it was commonly believed that classical computers could 
not be useful because errors in the computer itself would render the result untrustworthy. 
These doubts disappeared after the discovery of the powerful error-correction techniques for 
classical computers. In our era, quantum error-correcting codes, discovered by Shor and 
Steane in 1995, prove similar objections, pertaining to the use of quantum computers this 
time, fundamentally wrong. 
 
The first objection argument remains valid if the rate of decoherence is high, but that is true 
of any error-correction scheme: it is overwhelmed if the errors occur faster than they can be 
corrected. It is known now that errors can be corrected as they occur provided that the error 
rate is below a certain threshold, currently estimated at about 10-5 per qubit per clock cycle 
[3]. It is further assumed that errors occur independently on individual qubits, perhaps the 
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most important assumption, and that they appear uniformly throughout the quantum 
computer. Now, experience so far acknowledges practical the existence of systems with such 
properties, therefore this first argument cannot be regarded as a de facto objection, although it 
is the strongest counter-point. 
 
The second argument is refuted by the following discovery: the continuum of all possible 
errors can change the quantum state in one of a total of three possible ways. Thus the 
quantum error correction is an analogue, but a digital process [3]. Once one of these three 
errors has been detected, it can be easily undone by one of the several error-correcting 
transformations. For the record, let us illustrate the action of the three error operations (and 
the identical operation) on a single qubit in the state α|0> +β|1>: 
 
I (identical operation):  α|0> +β|1> Æ     α|0> +β|1> 
X (bit flip operation):   α|0> +β|1> Æ     α|1> +β|0> 
Z (phase flip operation):  α|0> +β|1> Æ     α|0>-β|1> 
Y (bit/phase flip operation):    α|0> +β|1>Æ     α|1> -β|0>,  
where α and β are complex numbers, and |0> and |1> are the two levels of a single qubit. 
 
It has been shown that all other errors can be decomposed in these “canonical error 
operations” . In other words, an entangled state of a number of qubits (the quantum codeword, 
as the next section will make clear), where |c0> and |c1> are two carefully chosen entangled 
states of the encoding qubits, can stil l be written as α|c0> +β|c1> in its original form6. 
Implicitly all operation errors wil l operate as in the case of the single qubit. 
 
As the last objection argument is concerned, Peter Shor has shown that in a restricted model 
of errors (the existence of which has been proved in the preceding paragraph), it is possible to 
restore a state using only partial knowledge of the state of the quantum computer. Hence we 
are not in the situation to apply Heisenberg’s principle and thus to destroy the quantum states 
because we have the knowledge of the entire system. This is certainly an innovation in 
quantum theory and can be used within the whole field, not only in reducing decoherence 
effects. The whole Heisenberg’s principle can apparently be “skipped” if a required operation 
is possible by using only partial knowledge of the quantum state. 
 
All these positive ideas have opened the path to a general theory of quantum error correction. 
We will aim at describing the outlines of this theory so far and its implications in the 
following sections of this paper.  
 
 
2.3 General Framework for the Quantum Error-Correction 
 
As also dwelled upon in the previous sections of work, coherent quantum states have a 
particular importance in quantum communication and quantum computation. Both situations 
involve the manipulation of states by unitary operations where some desired information is 
eventually extracted from parts of the state by measurement. There is a small difference 
between the two objectives; quantum communication involves multiple parties with limited 
communication capabiliti es and focuses more on the transmission of states over potentially 

                                                           
6 A simple mathematical induction should suffice as a solid proof in the general case. For the case of the three or 
five qubit words this is straightforward. 
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noisy channels, while quantum computation involves only one party and focuses on the 
unitary transformations involved in achieving the final state. However, in both of the cases 
the loss of coherence results in a reduction of the probabili ty of getting the correct answer 
after completion of the required operations. We need to focus on preserving a coherent state 
subject to unwanted interactions in a quantum memory or channel [1].  
 
Now, in classical communication and computer memories, the corrupted information can be 
introduced by introducing redundancy, for example by copying all or a part of the 
information to be preserved7. Unfortunately, such a simple redundancy scheme is 
incompatible with quantum states, primarily because the no-cloning theorem [1], [3], [4], [5] 
prevents the duplication of quantum information. Nevertheless, it has been recently found out 
that it is possible to correct a state against certain known errors by spreading the information 
over many qubits through an encoding. The goal is to find an encoding which behaves in a 
specific way under evolution by the interaction “superoperator” [1], [5]. The behavior must 
be such that it permits recovery of the original state.  
 
Let us consider the simplest non-trivial case of encoding a single qubit. The general state to 
be protected is of the form: |ψ>= α|0> +β|1>. The idea is to map |ψ> into a higher 
dimensional Hilbert space:  
  (α|0> +β|1>)|000…> Æ α|0L>+β|1L>     [1] 
 
The equation above defines the code. |0L> and |1L> are called the “logical zero” and the 
“ logical one” of the qubit which we want to preserve, respectively.  The new state in this 
equation should be such that any error induced by an incorrect functioning of the computer 
maps it into one of a family of two-dimensional subspaces that preserve the relative 
coherence of the quantum information. A measurement is then performed which projects the 
state into one of these subspaces. The original state can be recovered by a unitary 
transformation which depends on which of these subspaces has been observed. All these 
issues have been converted into a fascinating mathematical theory in recent papers. Maybe 
one the best examples in this sense is the work of the researchers from the Los Alamos 
National Laboratory, Emanuel Knill and Raymond Laflamme. In [1] they describe a general 
theory of quantum error-correcting codes in an excellent manner. In what follows we wil l 
refer to some of their findings and add our comments when considered necessary.  
 
First of all , assuming that the initial state is |ψi>, the interaction with the environment wil l 
leave the system (let this be a quantum computer, for instance) in the reduced density matrix  
ρf= $ (|ψi>), where $ is the superoperator associated with the interaction (the notation herein 
is the original notation used in the Knill & Laflamme paper).  Further, in the case where the 
environment is not initially entangled with the system ρf, we have:  

ρf =∑
a

Aa ρi Aa

�

 

A choice of operators Aa can be determined from an orthonormal basis |µa> of the 
environment, the environment’s initial state |e> and the evolution operator U of the whole 

                                                           
7 The reader is of course aware of the backup information created every time an important operation (such as 
install ing a new operating system) is performed. Ironically, redundancy plays here a positive role, while in 
programming as such it should be avoided as much as possible. That is, intrinsic redundancy is undesired, while 
redundancy in preserving the achieved final “program” is very necessary. 
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system: Aa = <µa|U|e>. We can immediately see that ∑
a

 Aa

�

Aa = I. The Aa are linear 

operators of the Hilbert space of the system and describe the effect of the environment. They 
are called interaction operators. Any family of operators Aa that satisfy the identity above 
define a superoperator.  
 
We made this entire rather cumbersome introduction in order to facilit ate the understanding 
of the necessary and suff icient conditions for the recovery of the state |ψi>. These conditions 
are:                                                     <0L| Aa

�

Ab|1L> = 0, 
             <0L| Aa

�

Ab|0L> = <1L| Aa

�

Ab|1L> 
 
While the first condition states that the logical zero and one must go to orthogonal states 
under any error, the second one implies that the length and inner products of the projections 
of the corrupted logical zero and one should be the same. These results are also found in [3] 
by DiVincenzo and Terhal: the codewords have to be still distinguishable after the error has 
occurred (orthogonali ty) and the codewords should be such that the most significant error 
map the encoded state outside the space spanned by the two qubit states (or codeword states) 
in a way independent of α andβ (partially in the requirement that the length and inner 
products of the different projections should be the same). 
 
We need to precise that for realistic quantum computers only a subset of possible errors can 
be corrected. An appropriate measure of the quali ty of a recovered code is the fideli ty, 
defined as the overlap between the final state ρf of a system ρ and the original state |ψi>. If 
the combined superoperator consisting of an interaction with the environment followed by a 
recovery operation is given by A= { A0,….}, as we assumed in this section, then the fideli ty is 
defined as:  

   F (|ψi>,A) = <ψi|ρf|ψI> = ∑
a

<ψi |Aa|ψi>  <ψi |Aa

�

|ψi>. 

It gives the probabili ty that the final state would pass a test checking whether it agrees with 
the initial state. As Knill and Laflamme perfectly reason, as we are thinking of encoding 
arbitrary states, we do not know in advance the state that will be used [1]. Thus we need to 
use the minimum fideli ty which is obviously the worst case fideli ty: 

   Fmin =min
| >ψ

<ψ|ρf|ψ> 

       
The best quantum code will definitely maximize Fmin.  
 
But let us see the exact form that the decoherence takes if we consider all the notations 
above: 

   <ψi|= α|0> +β|1> Æ ρ 





∗−∗

−∗∗

βββα
αβα

γ

γ

e

ea
,  

where e-γ (γ>=0) parameterizes the amount of decoherence. Moving further, decoherence can 
be understood in terms of the following interaction with the environment 
   |e>|0> Æ |e0>|0> and 
                                    |e>|1> Æ |e1>|1>, 
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with <e0|e1>= e-γ. We notice how much the Dirac notation simpli fies the equations. Using 

as environment basis |µ0> =|e0>| and |µ1> =|e1>| - e-γ |e0>)/ γ21 −− e  we obtain the interaction 
operators  
 

A0 = 





−γe0

01
 and A1 = 





− − γ210

00

e
.  

 
Now, for a single qubit which is corrupted by decoherence, the minimum fideli ty is given by 

  F = 
2

1 γ−+ e  ~ 1-
2

γ +… , 

 
with the last approximation valid for small J. 
It is important to realize that the quantum-error correction code in this shape corrects 
perfectly only if at most one error occurs [1].  In this respect the fideli ty just approximated 
plays the greatest role. As long as the decoherence is small (that is the same as small J), the 
probabili ty of having two or more errors will be much smaller than that of having one error. 
Therefore the framework for the further performing of the quantum error-correction 
operations (requiring perfect fideli ty) as such, is set. 
 
 
 
2.4. Quantum Error-Correcting Codes Implemented 
 
 
While Knill and Laflamme present a full abstract theory describing the fundamentals of the 
QECC8 and obtain the recovery operations after a fascinating chain of deductions and de 
facto calculus [1], we will limit ourselves to describing the implementation of these quantum-
error correcting codes in practice.  
 
The past years have witnessed an astonishing rate of progress in the development of error-
correction schemes for quantum memory and quantum computation. The discovery that a 
qubit, when suitably encoded in a block of qubits, can withstand a substantial degree of 
interaction with the environment without degradation of its quantum state has been followed 
by many other contributions which have identified many new coding schemes [4] .  
 
The first code developed by Peter Shor used nine qubits to encode a single qubit; this coded 
qubit could be restored when any one of the nine qubits had experienced some arbitrary 
disturbance. After this scheme was introduced, everybody came to understand the precise 
requirements for quantum error-correcting codes. Out of the many “entangled codewords” 
that are in use today, one of the most popular is the five-qubit code discovered by Raymond 
Laflamme at Los Alamos and independently by Charles Bennett at IBM. This code is 
currently considered the most economical encoding of a single qubit that can fully correct an 
arbitrary error on any of the code’s qubits.  
 
 

                                                           
8 This paper will make use of the acronym QECC as standard abbreviation within quantum theory denoting 
Quantum Error-Correcting Codes 
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                                                  -  Figure 1 – ([3], page 55) 
 

 
We have included above a figure of a quantum circuit consisting of four stages, as 
represented in [3]. When the qubit enters the circuit, it is encoded as one particular entangled 
states of the five qubits, D|c0> +E|c1>. There are many possibiliti es of choosing the basis 
states |c0> and |c1>, provided that the conditions discussed in the previous sections are fully 
met (orthogonali ty and independence of parameters). Herein it was chosen that |c0> is 
composed of states with an odd number of zeros in the codewords, while |c1> has states with 
an odd number of 1s [3], [4]. To write the codewords completely, we have: 
 
|c0> = |00000> + |11000> + |01100> + |00110> + |00011> + |10001> - |10100> - |01010> - 
|00101> -  |10010> -  |01001> - |11110> - |01111> - |10111> - |11011> - |11101> 

and 
|c1> = |11111> + |00111> + |10011> + |11001> + |11100> + |01110> - |01011> - |10101> - 
|11010> -  |01101> -  |10110> - |00001> - |10000> - |01000> - |00100> - |00010>9 
 
Coming back to the description on the figure, a sequence of quantum-gate operations act on 
the encoded qubit passing through each state of the circuit. For the sake of ill ustration, only 2 
operations are used on this circuit: the one-bit Hadamard operation and the two-qubit 
controlled-NOT gate10. The 4 stages of the circuit conclude with a measurement M3, M4, M0 
and M1 on a sixth ancill ary qubit, set to |0> at the beginning of each stage (see Figure 1). The 
idea is very ingenious as this ancill ary qubit is provided with information about the state of 
disrepair of the coded qubit. Each of the 5 qubits can be acted on by one of the three 
canonical error discussed in section 2.2, hence a total of 15 possible errors can occur. They 
are all embodied in the table next to the figure above. The outcomes of the measurement can 
be as one can follow on the table, –1 or 1, depending on which of the errors actually occurs. 
We can identify from the values of the measurement (this 4 values are the so-called error 
syndrome) which error occurred. For instance, to use a different example than the one used 
by the authors of the quoted paper, if the 4 measurements yield –1, -1, -1, +1, we know that 

                                                           
9 Another class of very popular 5-qubit codes is the Laflamme class where the one bit rotation is applied to 
qubits 0 and 1 in order to obtain the final representation. As long as one starts with a particular symmetric 
presentation for |0> and |1>, respectively, and takes care of the conditions, infinitely many representations can 
be obtained (see [4], pages 3260-3262 for details) 
10 The one-bit Hadamard operation transforms the qubits as follows: |0>

�
2-1/2(|0> + |1>) and |1>

�
2-1/2(|0> - 

|1>). The two-qubit controlled-NOT gate flips the lower target bit if the upper control bit is 1: |00>
�

|00>, 
|01>

�
|01>, |10>

�
|11>, |11>

�
|10>. These are elementary operations used here for the sole purpose of 

didactical exemplification 
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qubit number 1 has been disturbed and that the decoherence acting on it was a bit/phase 
flip error. Obviously the error correction is very simple; using a final quantum gate, the state 
of bit 1 is phased/flipped back to its correct state.  
 
It has been rigorously proven in [4] that this five-qubit code error correction circuit is fault-
tolerant, that is any error that occurs during the operations can be repaired at a later stage. 
However, as explicitly pointed out in [3], this scheme can only tolerate an error on one of the 
qubits. For extensions of this result work is currently undergone.  
 
 
3. Possible Conclusions  
 
 
We have tried in this paper to present an overview of the present scientific conception of 
decoherence as transition concept between the quantum and classical domains. Whether 
physically or philosophically justified, decoherence certainly plays a leading role in 
explaining the quantum origins of the classical and the quantum world. On the other hand we 
have pointed out that decoherence is mainly investigated for finding a way to combat its 
effects in order to practically implement quantum communication or quantum computation 
systems. The results in this sense can be considered amazing and future optimism seems to 
dominate within this particular area of the quantum theory. QECC techniques have reached 
high development stages making us think of practical applicability somewhere in the very 
near future. At the same time however, we have shown that only particular errors can be so 
far completely corrected and all in the framework of perfect fidelity. The study of imperfect 
reality codes is far from completed. Both the sources of introduced error, and its propagation 
when recovery is attempted many times require further study. But, to end in an optimistic 
manner, we have shown that the theory is there and that it works perfectly for particular 
systems. Hence there is no reason why generalization and further improvement should be 
insurmountable tasks. 
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