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Considerations on travelling wave solutions concerning
travelling bands of chemotactic microorganisms

I ntroduction

It has been already established that many biological phenomena exhibit, as
their most apparent feature, a coherent pattern or waveform that moves in space. Such
practical examples can be the depolarisation waves propagating along nerve axons,
coherent swarms of motile micro-organisms advancing steadily through their
environment toward a fresh supply of diffusing nutrient which they consume and seek
chemotactically, chemical concentration waves carried by fluid buffer flow and
diffusion through a separation column, propagation by random motility of logistically
reproducing organisms through a one dimensional universe. All these biological
examples have been aready more or less transposed into theoretical mathematical
formulas. In this particular case the mathematical representation of the propagating
waves will be investigated. The present essay will treat the existence of the travelling
wave solutionsin the case of the chemotactic microorganisms, namely coherent
moving bands or swarms that move towards the points where the food is concentrated.

Mathsintro

Before stating/defining any mathematical model we are going to see how we
can mathematically define and describe propagating patternsin general. A rather
trivial way of defining the travelling waves is the following: By the concept of
travelling waves we understand a particular class of solutionsto differential equation
systems, characterised by distributions that move over space while maintaining a
characteristic shape or profile. For amore insightful perspective, we are going to
perform the following steps. Let us suppose that u (X, t) represents the variation with
the position x and the time t of something involved in a propagating wave
phenomenon.

«y
u(x,O)*
x0=:0 X _p
e * \/\/\/
X1 X —p

In the figure above two different positions of an arbitrary waveform propagating
along the x-axis at a constant speed is described.



As seen in the figures above, we observe two snapshots, one at the instant t=0 and the
other at alater time t=t;, where, definitely, t;>0. We suppose that the curve illustrated
at t=0 moves steadily down the x-axis, therefore in the figures, the curve illustrated at
t=t; is geometrically congruent with the curve at t=0. In the same figures, xo=0 and x;
locates the positions of maximum concentration at times t=0 and respectively t=t;.
Thisway, we can immediately have the speed of propagation of thiswave. Let us
denoteit by c:

X =% _%
t,-0

If we view this waveform from a co-ordinate system that moves at speed ¢ (so
the speed calculated above), then, in the moving coordinate system, the wave shape
will not change with time. Let z measure distance, parallel to the x-axis, from the
centre of this moving co-ordinate system. If we denote by U (z) the shape of the
waveform as seen from this system, U will not change with time. We can find a
relation between U (z) and u (X, t) and this relation is the following:
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c=

U (2) = u(x,0)

Thisis because at time t=0, x=0 and z=0 | ocate the same position. Further on, we
must have

(4 U0 =u(x.t)

and by generalisation,
©)
U(2) =u(x +z1,)

Because at time t=t1, z=0 and x=x1 locate precisaly the same position. Now, having
the speed of the wave already calculated, we have
(6)

U(2) =u(ct, +zt))
We can writeit in amore general form (for every timet):
()

U(2) =u(ct+zt)
If now we identify x=ct+z, this being implicitly z=x-ct, we arrive at
)

u(x,t) =U(z) =U (x—ct)

Now, this last relationship is exactly what we sought in the beginning, and
proves that u (X, t) represents afixed waveform propagating along the x axis at
constant speed ¢, if and only if, for some function U (z), the last relation written above
(8) holds. We call z=x-ct awave variable.

Biological intro
A brief intro to the biological side of this subject could be appropriate before
introducing the mathematical description. In general, by chemotaxis we understand a

phenomenon that occurs when an organism moves preferentially toward arelatively
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high concentration d some chemicd (and then we talk abou positive chemotaxis) or
away from such a mncentration (implicitly, negative dhemotaxis). Many unicdlular
organisms present elaborate patterns of locomotion that may include diverse ways,
some of them being cili ary beating (that is, synchronous motion d hair-like
appendages onthe cdl surface), helical swimming, crawling on surfaces, tumbling in
threedimensions or pseudopodal extension (that is, protrusion d part of the cél and
streaming of the cellular contents). Referring to the gopearance of these motions, in
the esence of overriding external cues, the motion may appear saltatory (jerky) or
randam; eventually, these motion feaures are determined by events on subcdl ular
levels. All these terms can be discussed in more detail, bu thisis not the subjed of
this paper. Given the information above we ae trying to find travelling wave
solutions in the motion of these microorganisms. As an olservation, amoebae and
baderia ae prime model systems for investigating chemotaxis at the popuation and
moleaular levels.

Bacterial chemotaxis

Baderial chemotaxisis aphenomenon that is currently under investigation.
An intuitive idea dou the experiments that have been dorein arder to emphasise the
chemotaxis can be summarised in afew lines. A one-dimensional universe (along
capill ary tube) isfill ed with afluid medium in which anutrient substance, s, is
dissolved. Baderiaare inoculated into ore end d the tube. They are observed to
consume the nutrient in their neighbowrhoodand to form aband that moves stealily
up the tube. Now, what can be the reason for aneed of a mathematical model in this
case? After all, at first sight, if the bacteria consume the locad nutrient supply, and can
sense dundnt food rearby down the tube, and have this abili ty to move toward it,
then what else can happen? However, by performing a mathematicd analysis of the
phenomenon, it can be observed that only certain spedal chemotactic response
algorithms will | ead to band propagation maintaining coherence over “long”
(compared to band width) distances. Therefore, the mathematicd quest will mainly
consist on cataloguing all the maaoscopic (or phenomenalogical) behaviour
repertoires of chemotadic microorganisms that lead to propagating bands.

The constitutive equations for chemotaxis

Keller and Segel were among the first to describe a continuum equation
underlying the phenomenon d chemotaxisin the cae of the microorganisms. The
basis of their model was constituted by the ideas of attradion and repulsion. If we
denote with b (x, t) the popuation density of bacteria and with s (x, t) the nutrient
density (adually derived from the substrate mncentration), then we can state a
hypothesis about the mnstitutive relation for the baderial flux density:

(9)

ob 0s
J =—u—+by—
o = "M% X ox
The first term of the relation represents the random (diffusive) component of the flux:
(10)
ob 0s
J =-U—+bx—
random l'l aX X aX

The second component is the chemotactic component of the flux;
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(11)

‘Jchemotactic =—H & + bX &
Now, the model isto berestricted at the cases when the bacteria neither die, nor
reproduce during the experiment (reproduction can be prevented chemically).
We can now agree on abalance law for the bacterial density b (x, t).

12)
D __ 0 o0
i aX( H(S)ax+bX(S)aX)

The nutrient diffuses passively and is eventually eaten by the bacterial. We can also
write a balance law for the nutrient, therefore:

0s 0°s
1 —=D—-k(s)b
(13) ot ox? (5

where D isthe molecular diffusivity of the food and k(s) isthe rate of nutrient
consumption per bacterium. Definitely, in general we expect k(s) to fall to zero as s
fallsto O, becauseit is clear that no consumption can be possible when no food is
present.

In this paper only the case when the diffusive flux of nutrient is negligible will be
taken into consideration, for the sake of simplicity and because of practical reasons,
namely because both the random motility and the chemotactic sensitivity are so much
larger than the nutrient diffusivity, D; thisimplies that we should regard the nutrient
as motionless while the bacteria sweep through it.

Seeking for travelling wave solutions

We are going to seek for atravelling wave solution of (12) and (13). Wefirst
assume that

b (X, t)=B(z) and s(x,t)=S(z), where z=x-ct. By substituting into the named
equations we obtain:

14 —Cd_B:—i(— d_B+bXd_S)
(14 az  daz' Paz ™z
and
ds
-c— =-kB
(19 az

Asit would be rather difficult to treat (14) in the form above, we can integrate it once.
Evaluating at z tending to infinity, we see that the constant of the integration must
vanish, therefore we have:
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dB ds
-cB=u—-bxy—
(16) H Xz

Further on, we can eliminate dS/dz in (16), using (15). Thisis how we obtain a second
order, norlinear, autonomous ODE system:

ﬁ = @ B
(7 dz C

dB B .
(18) = EH(S)(k(S)X(S)B c)

Now, we areinterested in solutions (S (2), B (2)) for the system abowve that are
non-negative and bourled for all values of the wave variable z. Actually, sincewe ae
interested in isolated propagating swarms of baderia, we are interested in solutions
for which B (z) tendsto 0,bath asz tendsto « andasz tendsto - .

Taking into consideration the first of the eguations of the system determined
abowve (17, 19, we natice that as z tendsto - w0, S (z) must deaease monaonicdly.
But S (2) canna fall below zero, because this way we would lose the biologicd
interpretation o it. Thus, the only posshbility leftis

(19) lim S(z) = s, = constant

Z— —00

The biological interpretation will also help us, thistime, in simplifying the
mathematica assumptions. Aswe do nd know what the unconsummated nutrient
concentration left in the wake of a band might be, but we know that it is very small,
we can lose no generality by assuming s.=0, because, if we have s.>0 we @n any time
introduce anew dependent variable s =s- s;, and thus new coefficient functions

0)K'(s) =k(s'+s,), W' (s)=u(s+s), x'(s)=x(s+s,)

Thus, the transformed version d equations (17, 18) will | ook similar, but with all the
coefficients being primed. We will have then

(21) lims'(z) =0,

Z - —00

We wish to dscover what phenomenalogical coefficient functions
(22) k(s), x(s), u(s)
make such solutions posshble. Keller and Odell considered a dassof representative
functions, namely

5
(23)k(s) = ks,  H(S) = U,S', x(s)=s—2,

whereko, o and d,are positive onstants, and a , r and pare @mnstants. The
biologicad meanings of these parameters can be briefly synthesised in: ko=the
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consumption rate constant, u o= random motility coefficient and d,=the ambient

nutrient concentration. One of the reasons for working only with this special class of
functionsis that the actual analysis becomes much easier.

Our system (17, 18) becomes in this way:

ds Kk,

a
25 —=—s5B
(29) dz ¢

aB 1 . a-
(26) E:E[JOS (k0508 pB—C2)B
Next, we will discuss the necessary condition on the nutrient consumption

rate,
(27) k(s) = k,s”

Now, if welet A be the cross-sectional area of the capillary tube and consequently we
denote by N the number of bacteriain the band, we arrive at:

(28) N = AIB(z)dz

Using equation (25) and (28) we derive the following;

200 dS cAS S v s

O Z=—00

From this last expression we see that the band can have a finite number of bacteriain
. . 1-a

itonlyif (from S7°)

(30) a<l

We will keep in mind this first solution for the moment.

In this case we have

_ky(@-a)N

31 -~
(31) s

Practically this last equation represents the fact that the band speed increases as the
number of bacteriain the band increases or as the rate at which they eat increases, or
as the ambient food concentration decreases (Sp).
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This equationis also important for the fad that if ko, N and S arefixed, thencis
fixed also regardlessof thevalue of J .
What is very interesting to do nav isfinding the steady states of system (25, 29.

Steady states, nullclines, phase portrait analysis

In general, the easiest and indicaed way of seeking and interpreting solutions
to ODE systemsisthe phase plane analysis. Thus, also in the present paper, with
reference to the particular ODE consisting of equations (25, 26, phase plane portraits
have been drawn with the ad of the newphase program developed by profesors
Richard Mansfield and Frits Beukers.

It isknown and proven that, in general (any biological phenomena studied in
order to stressthe propagating eff ects), biologicdly meaningful propagating solutions
are only obtained if the phase plane portrait correspondng to travelli ng waves admits
abounded trgjectory that is contained entirely in the paositive popuation guedrant.

Now, of course, we ae not including among these orbits the trivial bounced
trajedory: the paint (0, 0). In our particular case, after analysing the stealy states we
will be aleto eliminate from the first step those cases that are not bouncded and
contained entirely in the first quadrant. Sometimes appli ed mathematics is much
easier than pure theoretical mathematics...

Let us write again the system that we ae working with:

ds Kk,
—=—95"B
(29) dz c

B 1 .
7 = oHes (k,0,S" "B-c*)B

(26)

(S, B)=(So, 0) isastealy point for this system for all paositive values of S. In
other words, every single point onthe paositive S-axis is a steady state point, and,
moreover, there are no aher stealy state points.

The next step isto find the B-null cline. This nullcline is given by the airve:

(32) k,9,S" "PB-c® =0

which can be dso written consequently as foll ows:
(33) B=—-S"*

Now if we divide the secondequation d the system by the first, we obtain an
equation giving the slope of the trgjectories at the paint (S, B).
B _ 1
dS KoM,

(34) S (k,5,S° "B - ¢?)
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From this last equation we seethat, onthe S-axis (B=0), all the trajectories
have the negative slope:

dB =T c’
35 e B0 T g
(35) ds B=0 kolJoSra
The next step isto buld phese portraits for our system (25, 26 for different
choices of the wefficients. The purposeis definitely to seewhich of these choices
permit bounded pasiti ve solutions guch that

(36) limB(z) =0as |Z]|- o

(now we have defined exadly our target)

However, ou jobis made eaier because, indifferent of the case discussd,
there will be atrgjedory that approac stealy state points (these being any pointson
the S-axis) asz — o . Therefore we seek such solutions for which B (z)->0 as
z - —oo . The papers containing the phase plane portraits are d@taded at the end o
the document.

Discussing the different cases

Casel, p-a<0

We can seefrom the phase plane analysis as well as from very simple observations
that the B-nullclinetendsto « as Stendsto 0. Therefore, just using (34) above and
the locaion d the B nullcline, we can see(without bothering any longer with any
detail ed analysis of where the trajectories go as z tendsto — ), that B (z) cannat
possbly beame zero when z tends to 0. Therefore we can already rejed this case.

Casell, p-a=0

In this case the B-null cline will be horizontal and will i ntersed the B-axis at a
finite “height”, norzero however. This can be seen very well from the phase plane
portrait attached as appendix to this paper. If we pick any trgjectory approaching a
stealy state point onthe S-axis, as z tends to, thistrgjedory can never approach B=0
asit isfollowed backward. Therefore this case is also rgfeded withou bothering with
any more detail ed analysis of the trgjedories as z tendsto —oo .

Caselll, p-a>0

This case isthe most complex one; first of all it can be subdvided into ather 3
subclasses: 0<p-a<1, pa=1and pa>1. In each case the B null clineinterseds the
origin (0,0) andrises as Sincreases. All these cases can be easily visuali sed onthe
phase portraits attached as appendix.

Whil e in the second subclasswe have the B nullclineis a straight line, for the
other subclasses the B-null cline will | ook like a ©ncave arve, dovnward sloping (in
subclassl), respedively upward sloping (in subclassli1).

Now, whatever trgjedory we pick in the first quadrant, and we trace it
badkwards (so z deaeasing), B decreases, therefore there is a chancethat, as z tends

8



9

to— oo, the paint (0,0) is approached. So, we have found ore condition as necessary
for the travelli ng bands: p>a

We dso had a previous conditi on stating that we can have afinite number of
baderiain the band orly if a<1.

Having the two previous condti ons acaompli shed, namely p>a and a<1, we
claim that r+p>1 is necessary and sufficient so that S->0 and B-> 0, asz->- . In
other words, these 3 conditions put together are sufficient to guaranteethe existence
of awell-behaved travelling band containing finitely many baderia.

Segdl gives the sufficient condtion as an example. Pradicdly, the steps taken to

proveit are the following:
The asssumptionis proven by the method d reductionto absurd. We have as
hypothesis the 3 condti ons reminded above. We assume that B does nat approac 0
as S>0. Then, as B stays positive, in equation (34) the S* PB term overwhelmsthe —
¢?, as S>0 (thisisbecaise S - +00asS->0. Then, rear S>0, equation (34)
beoomes

B 1% gr08, ypich cen bewri dB/B O((d, / ty)S™PdS
s , which can be wri enasJ' J' o ! Ho :

Next, by integrating our last equation, we get:

th[}gZJf@lS?*‘p+con§

1-r-p
By writing this equationin the exporential form, we get the foll owing:
30 / Ho
1-r-p Sl—r -p

B =Qe

Next, knowing that r+p>1 (from our hypothesis) we get 150r/—u0p <0. Thus, the
exporent in the euation abovetendsto - . Since €~ = 0, we have B->0 as S->0,
contradicting with what we assumed about B. This contradiction proves the
sufficiency condition.

Unfortunately | did na manage to prove the necessary condtion. | took it
therefore as true. Pradicdly the ideaisto use the same method d reduction to absurd
and arrive & a contradiction.

We foundthat the ODE system (25, &) has a positive bounded solution B (z) such
that lim B (z2)=0 as |z| -~ « and thus we have asolitary pulse travelling band solution

(with Ib(x,t)dz finite) if and ory if a<1, p>a, and p+r>1.

I nterpretation of the results

We can hiologically interpret these results. The @ndition a<l means, quding Keller
and Odell, that “however appeding the a=1 choice may be, making k(s)=kos nea
s=0, it will nat permit exad travelli ng band solutions’. It is however passble to get
travelling bands if k(s) vanishes abruptly (thus with infinite slope) at s=0. For
examplefor a =. 5,50 k(s) = ky+/s.

Next, k(s) must vanish as s>0 (because no foodimplies no consumption);
thus for keeping the biological redity. Therefore, we nead O<a <1, and thus p>a >0.
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This means that for exad travelli ng band solutions, the chemotadic "sensitivity”,
X(s) =9, /s”, must beaomeinfinite & s->0.

For the third condti on the interpretation given by Segel is the following: the
larger r, the faster the random motili ty coefficient p(s) = y,s" vanishesas s>0 at the
traili ng edge. Furthermore, the, the larger r, the smaller has p to be. Since x(s) neals

to belarge as s->0, predsely to balance randam motili ty, the trade-off suggested by
p+r>1 seems to make sense.
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