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Introduction 
 
 It has been already established that many biological phenomena exhibit, as 
their most apparent feature, a coherent pattern or waveform that moves in space. Such 
practical examples can be the depolarisation waves propagating along nerve axons, 
coherent swarms of motile micro-organisms advancing steadily through their 
environment toward a fresh supply of diffusing nutrient which they consume and seek 
chemotactically, chemical concentration waves carried by fluid buffer flow and 
diffusion through a separation column, propagation by random motility of logistically 
reproducing organisms through a one dimensional universe. All these biological 
examples have been already more or less transposed into theoretical mathematical 
formulas. In this particular case the mathematical representation of the propagating 
waves will be investigated. The present essay will treat the existence of the travelling 
wave solutions in the case of the chemotactic microorganisms, namely coherent 
moving bands or swarms that move towards the points where the food is concentrated. 
 

Maths intro 
 

 Before stating/defining any mathematical model we are going to see how we 
can mathematically define and describe propagating patterns in general. A rather 
trivial way of defining the travelling waves is the following: By the concept of 
travelling waves we understand a particular class of solutions to differential equation 
systems, characterised by distributions that move over space while maintaining a 
characteristic shape or profile. For a more insightful perspective, we are going to 
perform the following steps. Let us suppose that u (x, t) represents the variation with 
the position x and the time t of something involved in a propagating wave 
phenomenon.  
 (1)  
 
      u(x,0)  
 
 
                           x0=0                                                          x  
 
                           u(x1,t1)  
 
 
 
                                                        x1                                               x   

In the figure above two different positions of an arbitrary waveform propagating 
along the x-axis at a constant speed is described.  
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As seen in the figures above, we observe two snapshots, one at the instant t=0 and the 
other at a later time t=t1, where, definitely, t1>0. We suppose that the curve illustrated 
at t=0 moves steadily down the x-axis, therefore in the figures, the curve illustrated at 
t=t1 is geometrically congruent with the curve at t=0. In the same figures, x0=0 and x1 
locates the positions of maximum concentration at times t=0 and respectively t=t1. 
This way, we can immediately have the speed of propagation of this wave. Let us 
denote it by c: 
 

If we view this waveform from a co-ordinate system that moves at speed c (so 
the speed calculated above), then, in the moving coordinate system, the wave shape 
will not change with time. Let z measure distance, parallel to the x-axis, from the 
centre of this moving co-ordinate system. If we denote by U (z) the shape of the 
waveform as seen from this system, U will not change with time. We can find a 
relation between U (z) and u (x, t) and this relation is the following: 
(3)  

)0,()( xuzU =  
  
  This is because at time t=0, x=0 and z=0 locate the same position. Further on, we 
must have 

(4)           ),()0( 11 txuU =  
  
and by generalisation,  
(5)  

      ),()( 11 tzxuzU +=  
Because at time t=t1, z=0 and x=x1 locate precisely the same position. Now, having 
the speed of the wave already calculated, we have 
(6)  

),()( 11 tzctuzU +=  
We can write it in a more general form (for every time t):  
(7) 

     ),()( tzctuzU +=  

If now we identify x=ct+z, this being implicitly z=x-ct, we arrive at  
(8) 

)()(),( ctxUzUtxu −==  
 
 Now, this last relationship is exactly what we sought in the beginning, and 
proves that u (x, t) represents a fixed waveform propagating along the x axis at 
constant speed c, if and only if, for some function U (z), the last relation written above 
(8) holds. We call z=x-ct a wave variable.   
 

Biological intro 
 
  A brief intro to the biological side of this subject could be appropriate before 
introducing the mathematical description. In general, by chemotaxis we understand a 
phenomenon that occurs when an organism moves preferentially toward a relatively 
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high concentration of some chemical (and then we talk about positive chemotaxis) or 
away from such a concentration (implicitly, negative chemotaxis). Many unicellular 
organisms present elaborate patterns of locomotion that may include diverse ways, 
some of them being cili ary beating (that is, synchronous motion of hair-li ke 
appendages on the cell surface), helical swimming, crawling on surfaces, tumbling in 
three dimensions or pseudopodial extension (that is, protrusion of part of the cell and 
streaming of the cellular contents). Referring to the appearance of these motions, in 
the absence of overriding external cues, the motion may appear saltatory (jerky) or 
random; eventually, these motion features are determined by events on subcellular 
levels. All these terms can be discussed in more detail , but this is not the subject of 
this paper. Given the information above we are trying to find travelli ng wave 
solutions in the motion of these microorganisms. As an observation, amoebae and 
bacteria are prime model systems for investigating chemotaxis at the population and 
molecular levels.  
 

Bacterial chemotaxis 
 

 Bacterial chemotaxis is a phenomenon that is currently under investigation.  
An intuitive idea about the experiments that have been done in order to emphasise the 
chemotaxis can be summarised in a few lines. A one-dimensional universe (a long 
capill ary tube) is fill ed with a fluid medium in which a nutrient substance, s, is 
dissolved. Bacteria are inoculated into one end of the tube. They are observed to 
consume the nutrient in their neighbourhood and to form a band that moves steadily 
up the tube. Now, what can be the reason for a need of a mathematical model in this 
case? After all , at first sight, if the bacteria consume the local nutrient supply, and can 
sense abundant food nearby down the tube, and have this abili ty to move toward it, 
then what else can happen? However, by performing a mathematical analysis of the 
phenomenon, it can be observed that only certain special chemotactic response 
algorithms will l ead to band propagation maintaining coherence over “ long” 
(compared to band width) distances. Therefore, the mathematical quest will mainly 
consist on cataloguing all the macroscopic (or phenomenological) behaviour 
repertoires of chemotactic microorganisms that lead to propagating bands.  
 

The constitutive equations for chemotaxis 
 
 Keller and Segel were among the first to describe a continuum equation 
underlying the phenomenon of chemotaxis in the case of the microorganisms. The 
basis of their model was constituted by the ideas of attraction and repulsion. If we 
denote with b (x, t) the population density of bacteria and with s (x, t) the nutrient 
density (actually derived from the substrate concentration), then we can state a 
hypothesis about the constitutive relation for the bacterial flux density:  
 
(9) 
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The first term of the relation represents the random (diffusive) component of the flux:  
 
(10) 
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The second component is the chemotactic component of the flux; 
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Now, the model is to be restricted at the cases when the bacteria neither die, nor 
reproduce during the experiment (reproduction can be prevented chemically).  
We can now agree on a balance law for the bacterial density b (x, t).   
 
(12) 
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The nutrient diffuses passively and is eventually eaten by the bacterial. We can also 
write a balance law for the nutrient, therefore:  
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where D is the molecular diffusivity of the food and k(s) is the rate of nutrient 
consumption per bacterium. Definitely, in general we expect k(s) to fall to zero as s 
falls to 0, because it is clear that no consumption can be possible when no food is 
present. 
   In this paper only the case when the diffusive flux of nutrient is negligible will be 
taken into consideration, for the sake of simplicity and because of practical reasons, 
namely because both the random motility and the chemotactic sensitivity are so much 
larger than the nutrient diffusivity, D; this implies that we should regard the nutrient 
as motionless while the bacteria sweep through it.  
 

Seeking for travelling wave solutions 
 
 We are going to seek for a travelling wave solution of (12) and (13). We first 
assume that  

b (x, t)=B(z) and s(x,t)=S(z), where z=x-ct. By substituting into the named 
equations we obtain:  

 
 

(14)    )(
dZ

dS
b

dZ

dB
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dB
c χµ +−−=−  

 
and 

         

 (15)    kB
dZ

dS
c −=−  

 
As it would be rather difficult to treat (14) in the form above, we can integrate it once. 
Evaluating at z tending to infinity, we see that the constant of the integration must 
vanish, therefore we have:  
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 (16)   
dZ

dS
b

dZ

dB
cB χµ −=−  

 
Further on, we can eliminate dS/dz in (16), using (15). This is how we obtain a second 
order, nonlinear, autonomous ODE system: 
 

 (17)   B
c

sk

dZ

dS )(=  

 
 

 (18)   ))()()(( 2cBssks
c

B

dZ

dB −= χµ  

 
 
 Now, we are interested in solutions (S (z), B (z)) for the system above that are 
non-negative and bounded for all values of the wave variable z. Actually, since we are 
interested in isolated propagating swarms of bacteria, we are interested in solutions 
for which B (z) tends to 0, both as z tends to ∞  and as z tends to - ∞ . 
 Taking into consideration the first of the equations of the system determined 
above (17, 18), we notice that as z tends to - ∞ , S (z) must decrease monotonically. 
But S (z) cannot fall below zero, because this way we would lose the biological 
interpretation of it. Thus, the only possibili ty left is 
 
(19)     tconsszS

z
c tan)(lim ==

−∞→
 

 
The biological interpretation will also help us, this time, in simpli fying the 
mathematical assumptions. As we do not know what the unconsummated nutrient 
concentration left in the wake of a band might be, but we know that it is very small , 
we can lose no generali ty by assuming sc=0, because, if we have sc>0 we can any time 
introduce a new dependent variable s’=s- sc , and thus new coeff icient functions  
 

 (20) ),()( cssksk +′=′′     )()( csss +′=′′ µµ ,   )()( csss +′=′′ χχ  

 
Thus, the transformed version of equations (17, 18) will l ook similar, but with all the 
coeff icients being primed. We will have then  
 

(21)     
−∞→

=′
z

zs ,0)(lim  

 
 We wish to discover what phenomenological coefficient functions    
(22)  k(s), )(),( ss µχ  
 make such solutions possible. Keller and Odell considered a class of representative 
functions, namely 
 

(23) αsksk 0)( = ,     
rss 0)( µµ = ,    ps

s 0)(
δχ = , 

where k0, µ 0 and 0δ are positive constants, and α , r and p are constants. The 

biological meanings of these parameters can be briefly synthesised in: k0=the 
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consumption rate constant, µ 0 = random motility coefficient and 0δ =the ambient 

nutrient concentration. One of the reasons for working only with this special class of 
functions is that the actual analysis becomes much easier.  
 
 Our system (17, 18) becomes in this way:  
 
 

(25)    Bs
c

k

dz

ds α0=  

 

(26)    BcBSks
cdZ

dB pr )(
1 2

000 −= −− αδµ  

 
 Next, we will discuss the necessary condition on the nutrient consumption 
rate, 
  

(27)     
αsksk 0)( =  

 
Now, if we let A be the cross-sectional area of the capillary tube and consequently we 
denote by N the number of bacteria in the band, we arrive at: 
  

(28)    ∫
∞

∞−

= dzzBAN )(  

 
Using equation (25) and (28) we derive the following; 
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From this last expression we see that the band can have a finite number of bacteria in 

it only if (from 
α−1S ) 

(30) 1<α  
 
We will keep in mind this first solution for the moment. 
 
In this case we have  
 

(31)          α

α
−
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Practically this last equation represents the fact that the band speed increases as the 
number of bacteria in the band increases or as the rate at which they eat increases, or 
as the ambient food concentration decreases (S0). 
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This equation is also important for the fact that if k0, N and S0  are fixed, then c is 
fixed also regardless of the value of δ . 
      What is very interesting to do now is finding the steady states of system (25, 26). 
 

Steady states, nullclines, phase portrait analysis 
 
  
 In general, the easiest and indicated way of seeking and interpreting solutions 
to ODE systems is the phase plane analysis. Thus, also in the present paper, with 
reference to the particular ODE consisting of equations (25, 26), phase plane portraits 
have been drawn with the aid of the newphase program developed by professors 
Richard Mansfield and Frits Beukers.  
 It is known and proven that, in general (any biological phenomena studied in 
order to stress the propagating effects), biologically meaningful propagating solutions 
are only obtained if the phase plane portrait corresponding to travelli ng waves admits 
a bounded trajectory that is contained entirely in the positive population quadrant.  
 Now, of course, we are not including among these orbits the trivial bounded 
trajectory: the point (0, 0). In our particular case, after analysing the steady states we 
will be able to eliminate from the first step those cases that are not bounded and 
contained entirely in the first quadrant. Sometimes applied mathematics is much 
easier than pure theoretical mathematics… 
 
 Let us write again the system that we are working with:  
 

(25) Bs
c

k

dz

ds α0=  

 
 

(26) BcBSks
cdZ

dB pr )(
1 2

000 −= −− αδµ  

 
 (S, B)=(S0, 0) is a steady point for this system for all positive values of S0. In 
other words, every single point on the positive S-axis is a steady state point, and, 
moreover, there are no other steady state points.  
  The next step is to find the B-nullcline. This nullcline is given by the curve: 
 

(32)   02
00 =−− cBSk pαδ   

 
which can be also written consequently as follows:  
 

(33)    
α

δ
−= pS

k

c
B

00
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Now if we divide the second equation of the system by the first, we obtain an 

equation giving the slope of the trajectories at the point (S, B).  
 

(34)    )(
1 2
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From this last equation we see that, on the S-axis (B=0), all the trajectories 
have the negative slope: 
 

(35)     αµ +=
−=

rB Sk

c

dS

dB

00

2

0|  

 
The next step is to build phase portraits for our system (25, 26) for different 

choices of the coefficients. The purpose is definitely to see which of these choices 
permit bounded positive solutions such that 
 
(36)   0)(lim =zB as  ∞→|| z  
 
            (now we have defined exactly our target) 

However, our job is made easier because, indifferent of the case discussed, 
there will be a trajectory that approach steady state points (these being any points on 
the S-axis) as z ∞→ . Therefore we seek such solutions for which B (z)->0 as 

−∞→z . The papers containing the phase plane portraits are attached at the end of 
the document.  

 
 

Discussing the different cases 
 
  
 Case I, p-α<0 
 
We can see from the phase plane analysis as well as from very simple observations 
that the B-nullcline tends to ∞  as S tends to 0+. Therefore, just using (34) above and 
the location of the B nullcline, we can see (without bothering any longer with any 
detailed analysis of where the trajectories go as z tends to – ∞ ), that B (z) cannot 
possibly become zero when z tends to 0. Therefore we can already reject this case.  
 
 Case II, p-α=0 
 
 In this case the B-nullcline will be horizontal and will i ntersect the B-axis at a 
finite “height” , nonzero however. This can be seen very well from the phase plane 
portrait attached as appendix to this paper. If we pick any trajectory approaching a 
steady state point on the S-axis, as z tends to, this trajectory can never approach B=0 
as it is followed backward. Therefore this case is also rejected without bothering with 
any more detailed analysis of the trajectories as z tends to –∞ .  
 
 Case II I, p-α>0 
 
 This case is the most complex one; first of all it can be subdivided into other 3 
subclasses: 0<p-α<1, p-α=1 and p-α>1. In each case the B nullcline intersects the 
origin (0,0) and rises as S increases. All these cases can be easily visualised on the 
phase portraits attached as appendix.  
             While in the second subclass we have the B nullcline is a straight line, for the 
other subclasses the B-nullcline will l ook like a concave curve, downward sloping (in 
subclass I), respectively upward sloping (in subclass II I).  
              Now, whatever trajectory we pick in the first quadrant, and we trace it 
backwards (so z decreasing), B decreases, therefore there is a chance that, as z tends 
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to – ∞ , the point (0,0) is approached. So, we have found one condition as necessary 
for the travelli ng bands: p>α 
            We also had a previous condition stating that we can have a finite number of 
bacteria in the band only if α<1. 
 Having the two previous conditions accomplished, namely p>α and α<1, we 
claim that r+p>1 is necessary and sufficient so that S->0 and B-> 0, as z->- ∞ . In 
other words, these 3 conditions put together are suff icient to guarantee the existence 
of a well -behaved travelling band containing finitely many bacteria.  
       Segel gives the suff icient condition as an example. Practically, the steps taken to 
prove it are the following:  
The assumption is proven by the method of reduction to absurd. We have as 
hypothesis the 3 conditions reminded above. We assume that B does not approach 0 
as S->0. Then, as B stays positive, in equation (34) the BS p−α term overwhelms the –

c2, as S->0 (this is because +∞→− pS α
as S->0. Then, near S->0, equation (34) 

becomes  

BS
dS

dB pr −+−−≅ αα

µ
δ

0

0
, which can be written as dSSBdB pr−−∫ ∫≅ )/(/ 00 µδ . 

 
Next, by integrating our last equation, we get: 
 

constS
pr

B pr +
−−

≅ −−100

1

)/(
ln

µδ
 

By writing this equation in the exponential form, we get the following:  

prpr SQeB
−−−−

=
11

0/0 µδ

 

Next, knowing that r+p>1 (from our hypothesis) we get 0
1

/ 00 <
−− pr

µδ
. Thus, the 

exponent in the equation above tends to - ∞ . Since 0=−∞e , we have B->0 as S->0, 
contradicting with what we assumed about B. This contradiction proves the 
suff iciency condition. 
 Unfortunately I did not manage to prove the necessary condition. I took it 
therefore as true. Practically the idea is to use the same method of reduction to absurd 
and arrive at a contradiction. 
  
We found that the ODE system (25, 26) has a positive bounded solution B (z) such 
that lim B (z)=0 as |z| ∞→  and thus we have a solitary pulse travelli ng band solution 

(with ∫
∞

∞−

dztxb ),(  finite) if and only if αα<1, p>αα, and p+r>1.  

Interpretation of the results 
We can biologically interpret these results. The condition α<1 means, quoting Keller 
and Odell , that “however appealing the α=1 choice may be, making k(s)=k0s near 
s=0, it will not permit exact travelli ng band solutions” . It is however possible to get 
travelli ng bands if k(s) vanishes abruptly (thus with infinite slope) at s=0. For 

example for α =. 5, so sksk 0)( = . 

 Next, k(s) must vanish as s->0 (because no food implies no consumption); 
thus for keeping the biological reali ty. Therefore, we need 0<α <1, and thus p>α >0. 
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This means that for exact travelli ng band solutions, the chemotactic ”sensitivity” , 
pss /)( 0δχ = , must become infinite as s->0.  

 For the third condition the interpretation given by Segel is the following: the 
larger r, the faster the random motili ty coeff icient rss 0)( µµ =  vanishes as s->0 at the 

traili ng edge. Furthermore, the, the larger r, the smaller has p to be. Since )(sχ needs 
to be large as s->0, precisely to balance random motili ty, the trade-off suggested by 
p+r>1 seems to make sense.  
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