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1 Introduction

Since longitudinal data sets contain observations over the same units
(e.g. individuals, household, firms, industries, regions, countries) re-
peated over a number of time periods, panel data techniques present ma-
jor advantages over standard time-series or cross-sectional approaches,
by combining their identifying features. The identification of time series
parameters was usually based on notions of stationarity, predetermined-
ness and uncorrelated shocks; identifying cross-sectional parameters tra-
ditionally relied on exogenous instrumental variables and random sam-
pling; working with panel data sets allows using all these resources and
at the same time determines economists to think more about the nature
and applicability of a particular technique to identify a parameter of
potential interest.

Several improvements that working with panel data has over work-
ing with conventional time-series or cross-sectional data are for instance
mentioned in Hsiao (2003). There is for instance a larger number of data
points available, increasing therefore the degrees of freedom and reduc-
ing the colinearity among explanatory variables. Next, panel data al-
lows constructing and testing more complicated behavioral models than
purely cross-sectional or time series data. Yet another plus is that we
can better study the dynamics of adjustment, such as for instance the
effect of unionism on economic behavior. A particular advantage of the
micro-panel data sets is that they eliminate biases resulting from aggre-
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gation over micro-units; see Blundell (1988) for an interesting survey in
this sense or Blundell and Meghir (1990) for a more specific discussion
on estimating life-cycle models. In a nutshell, the most acclaimed fea-
tures of longitudinal sets are probably summarized in that they can often
provide the exogenous variation required to identify structural parame-
ters through comparisons across periods covering policy changes and in
the possibility of following the same units over time, which facilitates
analyzing dynamic responses and modelling unobserved heterogeneity.
The main objective of this paper is to give a general overview of

the main trends and current status in panel data econometrics, build-
ing on the guidelines given in Manuel Arellano’s lectures in the NAKE
Workshop from Rotterdam, June 10-13, 2003. Next to adopting a broad-
spectrum approach, we will put some more emphasis on a few selected
themes. We will insist for instance on the static longitudinal framework
with its basic motivations of controlling for unobserved heterogeneity
and decomposing error structures, since much of this is recurrent in
other sections. An extensive treatment of estimating covariance struc-
tures for dynamic models, including the discussion of a concrete example
in Abowd and Card (1989), will also be provided. The overall structure
of the paper is the following: section 2. will tackle static panel data mod-
els; in section 3. the focus will be on time series models and dynamic
error components; section 4. will try to give the reader an impression
of dynamics with exogeneity versus predeterminedness; section 5. will
briefly discuss discrete choice models.

2 Static models

2.1 Unobserved heterogeneity
The rationale econometricians invoke when using panel data in general
and static regression models in the narrower sense, seems to be based
on two distinct motives: first, controlling for unobserved time-invariant
heterogeneity in cross-sectional models and second, disentangling com-
ponents of variance and studying the dynamics of cross-sectional pop-
ulations. Loosely speaking, these reasons can be associated with the
two main panel data techniques, the fixed effects and the random ef-
fects models. In the remainder of this section we shall discuss issues
pertaining to both these motivations.
Consider the following cross-sectional regression model:

yi1 = βxi1 + ηi + vi1 (1)

Following the introductory discussion above we can approach the esti-
mation of β in different ways, depending on our starting premise. If ηi is
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observed then β can be immediately identified from a multiple regression
of y on x and η. If ηi is not observed however, in order to identify β we
either need lack of correlation between xi1 and ηi, so Cov(xi1, ηi) = 0,
in which case we will estimate β as

β =
Cov(xi1, yi1)

V ar(xi1)
(2)

or we need to have an external instrument zi available so thatCov(zi, ηi) =
0, Cov(zi,vi1) = 0 but Cov(zi, xi1) 6= 0, so that we can estimate

β =
Cov(zi, yi1)

Cov(zi, xi1)
(3)

When none of the approaches above is applicable we have a potential
problem. Suppose however that we observe yi2 and xi2 for the same
individuals in a second period:

yi2 = βxi2 + ηi + vi2 (4)

If we make the strict exogeneity assumption1 for the idiosyncratic
disturbance vit ,

E(vit|xi1, xi2, ηi) = 0, for t = 1, 2 (5)

then we can still identify β in a regression in first differences, albeit the
individual effect ηi is unobservable:

yi2 − yi1 = β(xi2 − xi1) + (vi2 − vi1) (6)

resulting in

β =
Cov(∆xi2,∆yi2)

V ar(∆xi2)
(7)

Arellano (2003) gives a few concrete examples where determining
the coefficient of interest through first-differencing works and where this
does not work. For the first case we have the classical Cobb-Douglas
production function, present among others also in Chamberlain (1984),

1The strict exogeneity assumption implies that explanatory variables in each time
period are uncorrelated with the idiosyncratic error in each time period, E(x

0
isuit) =

0, ∀ s, t = 1, 2, ..T (with T = 2 in our case). In particular this assumption is much
stronger than the zero contemporaneous correlation E(x

0
ituit) = 0, t = 1, 2, ..T . For

consistency of panel data estimation the E(x
0
isuit) = 0 condition suffices, allowing

for possible correlation between ci and vit for any t. Nonetheless standard forms of
statistical inference rely on expression (5. See Wooldrige(2002) for a clear and in
depth treatment of these issues.
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where (1) represents a production function for an agricultural product.
The following notations are imposed: i - farms, t - time periods (seasons
or years), yit - log output, xit - log of a variable input (e.g. labour), ηi - an
input remaining constant over time (e.g. soil quality), vit - a stochastic
input outside the farmer’s control (e.g. rainfall). We suppose that the
soil quality is known by the farmer but not by the researcher; hence
if the farmers maximize expected profits there will be a cross-sectional
correlation between labour and soil quality, or, formally, between the
regressor variable xit and the individual effect ηi. Suppose next that data
on yi2 and xi2 for a second period become available. Suppose also that
rainfall in the second period is independent of a farm’s labour demand
in the two periods, thus checking for the exogeneity assumption above
having labour uncorrelated with rainfall at all lags and leads. Then
even in the absence of data on ηi, the availability of panel data affords
identification of the technological parameter β.

While this was an example that worked, let us turn to one which
does not. This is the standard case of estimating the structural returns
to education. Consider again our regression equation in (1). We label by
yit - log wage, xit - years of full time education, ηi - unobserved ability
and β - returns to education. The dilemma is that xit typically lacks
time series variation. A regression in first differences will not identify
β because in (7), V ar(∆xi2) would be virtually 0. So in this case panel
data analysis is not very useful; we would manage to solve this problem
if we could get some exogenous instrumental variables such as data on
siblings for instance.

In the paragraphs above, talking about the unobserved heterogeneity,
we have in fact introduced the fixed-effects models within panel data.
Let us see more formally what are its basic assumptions. Take a random
sample {(yi1, ..., yiT , xi1,..., xiT , ηi), i = 1, ...N} and consider the model
from (1), which rewritten here for multiple t :

yit = x0itβ + ηi + vit (8)

The assumptions of this model are:
A1.

E(vi|xi, ηi) = 0, for t = 1, ..., T (9)

where vi = (vi1, ..., viT )0 and xi = (xi1, ..., xiT )
0.

A2.
V ar(vi|xi, ηi) = σ2IT (10)

which means that the time-variant errors are conditionally homoskedas-
tic and serially uncorrelated.
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The fixed effects models are usually referred to as models where we
allow for arbitrary correlation between the unobserved individual effect
ηi and the observed explanatory variable xit, contrasting with random ef-
fects models where the permanent effect is independent of the regressors
(Wooldridge (2002)). Assumption A1 above is the fundamental assump-
tion since it puts forward the strict exogeneity condition. Panel data
models without this assumption are more complex and shall be consid-
ered later in this paper. The second assumption A2 is just an auxiliary
assumption needed for optimality of simple OLS estimators as it will
become clearer below.

We shall now introduce the most popular estimator in panel data
analysis, namely the within-group estimator (know also under several
other names, including covariance estimator, dummy-variable least square
estimator2 or fixed effects estimator). If we consider the equation in (8),
estimating first differences works without problems if T = 2, when we
can apply OLS to the equation

∆yi2 = ∆x0i2β +∆vi2 (11)

When we have T ≥ 3 however, we could have some problems trying to
use first differencing since this technique might induce serial correlation.
Subsequent to first-differencing we will have a system of T −1 equations
which can be written easier in the compact form

Dyi = DXiβ +Dvi (12)

with D being the (T − 1)× T matrix operator

D =


−1 1 0 . . . 0 0
0 −1 1 0 0
. . .
. . .
. . .
0 0 0 . . .−1 1

 (13)

Provided E(Dvi|xi) = 0, we obtain unbiased and consistent estimates
for β by OLS, for large N :

bβOLS =
Ã

NX
i=1

(DXi)
0DXi

!−1 NX
i=1

(DXi)
0Dyi (14)

2See Verbeek(2000) for a brief discussion of the equivalence between the within-
group and the dummy least square estimator.
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If assumption A2 is however not respected we will face correlation be-
tween the errors in the first differences and the x0s, so that

V ar(Dvi|xi) = σ2DD0 (15)

The optimal estimator in this case is the generalized least squares (GLS)
estimator, which takes the form

bβWG =

Ã
NX
i=1

X 0
iD

0(DD0)−1DXi

!−1 NX
i=1

Xi
0D0 (DD0)−1Dyi (16)

This is the within-group estimator and it is equivalent to its alternative
form as deviations from time means:

bβWG =

"
NX
i=1

TX
t=1

(xit − xi)(xit − xi)
0
#−1 NX

i=1

TX
t=1

(xit − xi)(yit − yi) (17)

The equivalence between (16) and (17) can be easiest seen if we label by
Q the within-group operator

Q ≡ IT − u0/T = D0(DD0)−1D (18)

Q transforms the original time series into deviations from time means:eyi = Qyi, with elements are given by fyit = yit − yi. We obtain thus
equation (17), an OLS in deviations from time means.

There is yet another alternative transformation of the original data
that results from first differencing and then applying GLS to the differ-
enced data to remove the serial correlation induced in the first stage.
This is the forward orthogonal deviations technique (see Arellano and
Bover (1995) for a detailed treatment). Consider the (T −1)×T matrix

A = (DD0)−1/2D (19)

so that A0A = Q defined above, and AA0 = IT−1. A T × 1 time series
error transformed by A,

v∗i = Avit (20)

will consist of elements of the form

v∗it = ct[vit − 1

T − t
(vi,t+1 + ...+ viT )] (21)

where c2t =
T−t

T−t+1 .
We eliminate individual effects by applying the orthogonal deviations

transformation without inducing serial correlation in the transformed
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error as the case with first-differencing. The within-group estimator can
thus be also regarded as OLS in orthogonal deviations.

So far we have been assuming that the auxiliary assumption A2
(equation (10) above) was satisfied. The within-group estimator is op-
timal under this assumption. The question is now how to estimate the
model when homoskedasticity and serial correlation are violated and
when there would be thus inconsistent standard errors subsequent to
estimation. There are two relevant cases to be considered. One is when
we have panel data sets of fixed T and large N dimensions while the
second situation is the treatment of the case for large T and fixed N
dimensions. For the second case there are not clear directions of per-
forming the analysis, some variations being Newey-West estimators (see
Arellano(2003) for a discussion). For the first case, if

V ar(v∗i |xi) = Ω(xi) (22)

where Ω(xi) is a symmetric matrix of order T , then the optimal estimator
can be written as follows

bβUGLS =
Ã

NX
i=1

X∗0Ω−1(xi)X∗
i

!−1 NX
i=1

X∗0Ω−1(xi)y∗i (23)

Nevertheless this estimator is unfeasible (UGLS) because the matrix Ω is
unknown. We would need to estimate this matrix using nonparametric
methods or similar techniques. The only case whereΩ could be estimated
in a straightforward manner is one where the conditional variance of v∗i
in (22) is a constant but non-scalar matrix of the form

V ar(v∗i |xi) = Ω (24)

In this case the GLS estimator is feasible (FGLS) and has the following
form bβFGLS =

Ã
NX
i=1

X∗0bΩ−1X∗
i

!−1 NX
i=1

X∗0bΩ−1y∗i (25)

where bΩ = 1

N

NX
i=1

bv∗i bv∗0i (26)

Since however most of the time we cannot ensure that we have (24),
we have to think about intermediate possibilities. To this end we could
consider a larger set of moments, as follows

E(xitv
∗
is) = 0, ∀s, t (27)
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so as to use all past and future values to produce a GMM estimator. If
the auxiliary assumption A2 in (10) is not satisfied, then this estimator
will be more efficient that the within-groups estimator, but less efficient
than the benchmark unfeasible estimator βUGLS in (23). Such an es-
timator is obtained for example by using the π- matrix approach, also
referred to as the minimum-distance approach, of Chamberlain (1982,
1984). We will however not cover this topic here, indicating Hsiao (2003)
for a thorough review of this case.

2.2 Error components
We have been talking in the previous section about controlling for unob-
served heterogeneity as one of the main reasons for working with panel
data. It is time we moved to the second motivation, namely separating
out permanent from transitory components of variation. Let us consider
a very basic variance-components model

yit = µ+ ηi + vit (28)

where µ - intercept, ηi ∼ iid(0, σ2η) and vit ∼ iid(0, σ2). ηi and vit are
independent of each other and

V ar(yit) = σ2η + σ2 (29)

Having (29) above, we see that σ2η/(σ
2
η + σ2) of the total variance is due

to the permanent time-invariant component.
This model allows us to make a distinction between aggregate and in-

dividual transition probabilities. The individual transition probabilities
given ηi are independent of the state of origin:

Pr(yit ∈ [a, b]|yi,t−1 ∈ [c, d], ηi) = Pr(yit ∈ [a, b]|ηi) (30)

Using (30), the aggregate probability will beZ
Pr(yit ∈ [a, b]|ηi)dF (ηi|yi,t−1 ∈ [c, d]) (31)

We see thus that the decomposition in (28) allows us to distinguish
between individual probability statements for units with given ηi and
aggregate probabilities for groups of observationally equivalent units. In
order to estimate this variance-components models we first try to esti-
mate conditionally on ηi, in other words implementing an estimation of
the realizations of permanent effects ηi that occur in the sample and the
variance σ2 (Arellano (2003)). The straightforward unbiased estimates
would then be bηi = yi − y, i = 1, ..., N (32)
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and respectively

bσ2 = 1

N(T − 1)
NX
i=1

TX
t=1

(yit − yi)
2 (33)

The only problem is that we do not have yet an estimate of σ2η and
typically this is also of interest. The seemingly immediate way to get
this estimate would be the following. Having

V ar(yi) ≡ σ2 = σ2η +
σ2

T
(34)

an unbiased estimator of our statistics of interest can be obtained as

bσ2η = bσ2 − bσ2T (35)

The dilemma is that the estimator above can be negative by construc-
tion. There will be thus cases where we won’t be able to estimate bσ2η.
We also have to note that for large N and short T dimensions one can
obtain precise estimates of σ2η and σ2 but not of ηi, while for small N
and large T sets we would be able to obtain good estimates of ηi and σ

2

but not of σ2η.

The regression version of the model discussed previously in (28) is

yit = µ(xit, fi) + ηi + vit (36)

where
µ(xit, fi) = x0itβ + f 0iν (37)

We allow for both time-invariant as well as time-varying conditioning
variables (fi, respectively xit). A very important assumption is that
both error terms are uncorrelated with any of the regressors. This is in
contrast with the unobserved heterogeneity discussion in the previous
subsection where the very rationale was to allow the unobserved indi-
vidual effect ηi to be potentially correlated with the regressor. So here
we will have

E(ηi|xi1, ..., xiT , fi) = 0 (38)

and the variance
V ar(ηi|xi1, ..., xiT , fi) = σ2η (39)

Optimal estimation of the model is achieved using a specific GLS
known under the name Balestra-Nerlove estimator (Balestra and Nerlove
(1966)). A short review of this technique as well as discussion on tests
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for correlated unobserved heterogeneity can be found in Arellano (2003).

We move now to discuss an ever recurrent theme in the panel data
econometrics literature, measurement error in variables. Start with the
following cross-sectional regression model

yi = α+ x†iβ + vi (40)

Suppose x†i is observed with an additive noise effect εi under the form
xi:

xi = x†i + εi (41)

Further assume independence between all unobservables x†i , εi and vi.
Then β is given by

β =
Cov(yi, x

†
i)

V ar(x†i)
(42)

but x†i is unobservable. We try to get a better expression for β from

Cov(yi, xi)

V ar(xi)
=

Cov(yi, x
†
i)

V ar(xi) + V ar(εi)
=

β

1 + λ
(43a)

with λ = V ar(εi)/V ar(x
†
i). If we assume that we have the means of as-

sessing the measurement error, so that we either know or we can estimate
λ and σ2ε = V ar(εi) then from (43a) β can be determined :

β = (1 + λ)
Cov(yi, xi)

V ar(xi)
=

Cov(yi, xi)

V ar(xi)− σ2ε
(44)

More generally however we need to find other ways to estimate β since
we cannot always rely on approximating the size of the measurement
error. One solution would be to have a second noisy measure of x†i and
to use this as an instrumental variable. Suppose

zi = x†i + ξi (45)

If ξi is independent of εi and other unobservables, zi can be successfully
used as an IV so that β is obtained as3

β =
Cov(zi, yi)

Cov(zi, xi)
(46)

3In fact we even have an overidentifying restriction in this problem since we can
also write

Cov(xi, yi)

Cov(xi, zi)
= β
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We have noticed that for linear regression problems the treatment of
measurement errors is possible; the problem becomes really difficult
when we have a nonlinear regression framework where the measurement
error is no longer additively separable from the true value of the regres-
sor. One good reference for further reading in this sector is Hausman
et al (1995). A detailed introduction to the literature on measurement
error in panel data is Baltagi (2001).
We have not considered yet a model which combines unobserved het-

erogeneity and measurement error. Write the following linear regression
in a cross-section:

yi = x†iβ + ηi + vi (47)

having again a measurement error in x†i as in (41). All unobservables are
independent of each other, with the exception now that and ηi are not
independent. There will be in this case two bias components: the first
is due to the measurement error and it depends on σ2ε and the second is
due to the unobserved heterogeneity and it depends on the Cov(ηi, x

†
i)

term4. Trying to bypass this problem by using first differences in a
panel data series may exacerbate the error rather then eliminating it
(see Arellano (2003) and the further references he gives). In principle
the problem arises when there is more time series dependence in x†i
than in εit. One important observations that follows is that finding
significantly different results between regressions in first-differences and
regressions in orthogonal deviations indicate a high chance that we have
have measurement error in the model.
In general the availability of panel data helps to solve the problem

of measurement error bias by providing internal instruments but only
as long as we can restrict the serial dependence of the measurement
error. Take a model with unobserved heterogeneity and a white noise
measurement error, having T > 2. The moment conditions for the errors
in first-differences are

E




xi1
...

xi,t−2
xi,t+1
...
xiT

 (∆yit −∆xitβ)

 = 0, for t = 2, .., T (48)

This sort of moments and GMM estimators based on them have been
proposed before in the literature (see for instance Griliches and Hausman

4Sometimes these two biases tend to offset each other, for instance if β > 0
and Cov(ηi, x

†
i ) > 0, but a full offsetting only happens if Cov(ηi, x

†
i ) = σ2εβ (Arel-

lano(2003)), something very unlikely to happen however.
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(1986)). One thing to pay attention to is that if the latent variable x†i is
also white noise than the moment conditions above are still satisfied but
for any β, so the rank condition fails and we cannot identify the true
value of the coefficient. The basic identification assumption is therefore
the time-series persistence in the x’s relative to the ε’s. These esti-
mators are very useful in situations where first differencing aggravates
measurement error bias, as mentioned above.

3 Time series models for panel data

3.1 Covariance structures for error components
The time series models for panel data are motivated by a general inter-
est in the time series properties of longitudinal data sets. Albeit we are
interested in separating transitory from permanent components of varia-
tion as we saw before, or we want to test a theoretical model with specific
predictions and map this to the data (e.g. Hall and Mishkin (1982)), or
we like to use a predictive distribution in optimization problems under
uncertainty (e.g. Chamberlain (2000)), we find all these issues tackled
within the chapter of time series analysis in panel data sets.

One particular matter often arising in the panel data context is the
heterogeneity in the individuals and the quest of distinguishing it from
inherent individual dynamics in the data set. This problem is relevant
especially in short panels. Consider the following heterogeneous error
components model

yit = ηi + vit (49)

where vit is white noise. As we saw in previous sections, for T = 2 we
will have

Cov(yi1, yi2) = σ2η (50)

since
V ar(yi1) = V ar(yi2) = σ2η + σ2 (51)

Take now a homogeneous AR(1) model

yit = η + vit (52)

where
vit = αvi,t−1 + εit (53)

with η a constant, εit ∼ iid(0, σ2ε), vit ∼ iid(0, σ2) and σ2 = σ2ε/(1− α).
For T = 2 we will get

V ar(yi1) = V ar(yi2) = σ2 (54)
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and subsequently
Cov(yi1, yi2) = ασ2 (55)

The point is that there is no way to distinguish empirically between
the models in (49) and (52) when T = 2 and α ≥ 0. It is easy to see
this if we consider the observed autocorrelation ρ1. In the case of the
heterogeneous model this is given by

ρ1 =
σ2η/σ

2

1 + σ2η/σ
2

(56)

while in the AR(1) model
ρ1 = α (57)

So if for instance it happens that σ2η/σ
2 = 4 and α = 0.8, then ρ1

will have the same value in both models (numerical example in Arel-
lano (2003)). Following this argument, one can further check that a
heterogeneous model of the type (49) with T = 3 this time will be indis-
tinguishable from a homogeneous AR(2) model. This discussion can be
also carried out using moving average processes instead of autoregres-
sive ones. These few examples suggest is that in order to carry out a
nonparametric test of heterogeneity we need to have large N and T and
we need to ensure the absence of structural breaks.
One important feature in analyzing panel data is trying to distinguish

time effects; it might be for instance often useful to remove business cy-
cles or seasonal effects, to control for trends or demographic characteris-
tics and so on. Consider for discussion a model with individual-specific
trends used in the income modelling literature (e.g. Lillard and Weiss
(1979), Hause (1980)):

yit = η0i + η1it+ vit (58)

This can be written in a vector notation as

yi = Sηi + vi (59)

with yi = (yi1, ..., yiT )0, ηi = (η0i, η1i)
0, vi = (vi1, ..., viT )0 and S the T × 2

matrix

S =


1 1
1 2
... ...
1 T

 (60)

If V ar(ηi) = Ωη and vit ∼ iid(0, σ2) and independent of ηi, the covari-
ance matrix of yi is

Ω = SΩηS
0 + σ2IT (61)
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In order to identify the parameters of interest, Ωη and σ2, we need T ≥ 3,
since with T = 2 we will have that the variances of η0i, η1i and vit are
well identified only when η0i and η1i are assumed to be uncorrelated.
For the case T = 3, the identification proceeds as follows. We find the
covariance matrix of the variables yi1, ∆yi2, and ∆yi3 −∆yi2, with

yi1 = η0i + η1i + vi1
∆yi2 = η1i + vi2 − vi1

∆yi3 −∆yi2 = vi3 − 2vi2 + vi1

(62)

Then the variance-covariance matrix is given by

V ar

 yi1
∆yi2

∆yi3 −∆yi2

 =

σ00 + σ11 + 2σ01 + σ2 σ11 + σ01 − σ2 σ2

σ11 + 2σ2 −3σ2
6σ2


(63)

From (63) we can identify both Ωη and σ2.

We consider next the issues of stationarity and nonstationarity of
moving average processes and the covariance structure estimation. Let
us look first at some definitions. Covariance stationarity requires that

Cov(yit, yi,t−j) = γj, ∀t, j (64)

In other words the covariances at any lag do not depend on t. A station-
ary moving average process of order q (MA(q)) with individual effects
will impose next to (64) above a further restriction

λq+1 = ... = λT−1, q < j (65)

If we do not have individual effects the constant in (65) is 0. It is
almost intuitive that a nonstationary moving average of order q without
individual effects, provided q < T − 1, will satisfy

Cov(yit, yi,t−j) = 0, j > q (66)

Estimating and testing the covariance structures is usually done us-
ing method of moments or maximum likelihood estimators. We will
not insist here on the theoretical part, suggesting for instance the paper
of Arellano (1990) for further reading and references, but pass on to
the empirical stream and describe a related research therein. An appli-
cation where one uses the concepts introduced above in a multivariate
context and models dynamics through moving average processes appears
in Abowd and Card (1989). We will discuss this paper below. Another
relevant application in this area is done by Hall and Mishkin (1982),
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where predictions of the permanent income model are tested; a detailed
review of the econometrics in this latter paper is presented in Arellano
(2003).
Abowd and Card (1989) put forward an empirical analysis of individ-

ual earnings and hours data. Their paper summarizes the main features
of the covariance structure of earnings and hours changes and compares
it with a structure implied by a simple version of the life-cycle labor
supply model. The authors use three different longitudinal surveys, two
samples from the Panel Study of Income Dynamics (PSID), a sample of
older men from the National Longitudinal Survey of Men 49-59 (NLS)
and a sample from the control group of the Seattle and Denver Income
Maintenance Experiment (SIME/DIME). For each data set they find
evidence that supports the restrictions implied by a nonstationary bi-
variate MA(2) process without individual effects5. In order to control
for differences in experience within and between the samples, the co-
variances between the changes in logs of annual earnings and annual
hours were computed using the residuals from multivariate regressions
of changes in earnings and hours on time dummies and potential experi-
ence. A comparison of these results with previous literature dealing with
covariance structure of earnings such as Lillard and Weiss (1979), Hause
(1980) or MaCurdy (1982), reveals some possible general results. For
instance negative serial correlation between consecutive changes in log
earnings seems to be a pervasive phenomenon, a bivariate MA(2) mov-
ing average process seems to be adequate for describing the data (with
an exception in Lillard and Weiss who find significant large higher-order
autocovariances of earnings) and nonstationarity appears to be the rule.
The authors subsequently examine three statistical models that could

be considered the generators for the structure of earnings and hours
changes above. It is found that a relatively simple components-of-
variance model explains the data from all three surveys. This con-
structed model has three sources of earnings and hours variation:

∆yit =

µ
µ
1

¶
∆zit +∆uit + εit (67)

with ∆yit a vector of growth rates in earnings and hours of work, ∆zit
a shared component of earnings and hours variation ( a scalar MA(2)
component) and ∆uit and εit bivariate white noise processes accounting
for the measurement error and respectively the permanent shocks.

5In other words, Abowd and Card (1989) obtain a representation where
cov[∆ log git,∆ log git−j ], cov[∆ log hit, ∆ log hit−j ] and cov[∆ log git, ∆ log hit−j ] are
constant for all t and are zero for |j| > 2, where g represents earnings and h represents
worked hours.
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As regards interpreting the predicted outcome, according to the life-
cycle model the variation in the individual productivity affects earnings
more than hours. Abowd and Card’s (1989) empirical findings show
however that on the contrary, the earnings and hours covary proportion-
ally, which casts doubt on the labor supply interpretation of earnings
and hours variation and puts forward the view that most changes in
earnings and hours occur at fixed hourly wage rates.

3.2 Autoregressive models with individual effects
The form of regression covariances within autoregressive structures are
more complex than those in moving average processes. If theMA processes
limit persistence to a given number of periods and imply linear moment
restrictions in the covariance matrix of the data, as we have seen in
the previous section, with autoregressive processes the situation is dif-
ferent. They imply nonlinear covariance restrictions but provide at the
same time instrumental-variable conditions that are linear in the au-
toregressive coefficients. Moreover the autoregressive model discussion
usually centers around themes such as stationarity of initial conditions,
homoskedasticity and unit roots, which were typical issues in time-series
analysis. Consider the following model

yit = λyi,t−1 + αi + εit, t = 0, 1..., T (68)

Let us assume that |λ| < 1. The within-group estimator of the regression
equation above is given then by

bλWG =

PN
i=1

PT
t=1(yit − ȳi)(yi,t−1 − ȳi,−1)PN

i=1

PT
t=1(yi,t−1 − ȳi,−1)2

(69)

with yi = (1/T )
PT

t=1 yit and ȳi,−1 = (1/T )
PT

t=1 yi,t−1.
It has been shown, using expressions (68) and (69) above (Nickell

(1981)) that the within-group estimator is inconsistent for fixed T and
it is biased and inconsistent for large N and fixed T. This inconsistency
has not been caused by any assumption about the individual effects
α, since they are eliminated anyway when estimating the within-group
regression. The problem is that the within transformed lagged error is
correlated with the within transformed error. The bias disappears with
T →∞, but it is very important for small values of T . Fortunately there
are ways to go around this inconsistency. Take first the first differences
in (68):

yit − yit−1 = λ(yi,t−1 − yi,t−1) + εit − εi,t−1, t = 2, ..., T (70)
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Anderson and Hsiao (1981) proposed an instrumental variable estimator
for λ, using yi,t−2 as an instrument for (70):

bλIV = PN
i=1

PT
t=1 yi,t−2(yit − yi,t−1)PN

i=1

PT
t=1 yi,t−2(yi,t−1 − yi,t−2)

(71)

This estimator is consistent given that our assumption of no autocorre-
lation of the idiosyncratic error term εit is met and provided that

p lim
1

N(T − 1)
NX
i=1

TX
t=2

(εit − εi,t−1)yi,t−2 = 0 (72)

Anderson and Hsiao also proposed an alternative instrument, yi,t−2 −
yi,t−3, having a similar estimator expression and consistency condition
as in (71) and respectively (72), but having yi,t−2−yi,t−3 instead of the lag
value yi,t−2. Of course this second estimator also requires an additional
lag.

A method of moments approach can unify these estimators and elim-
inate the disadvantages of the small sample sizes. It was thus suggested
that the list of instruments is extended by exploiting additional moment
conditions and letting their number vary with t. GMM estimators using
all available lags at each period as instruments for equations in first-
differences were proposed by Holtz-Eakin et al (1988) and Arellano and
Bond (1991). This GMM estimator is represented as follows

bλGMM =
£
∆
¡
y0−1Z

¢
V −1N (Z 0∆y−1)

¤−1 ¡
∆y0−1Z

¢
V −1N (Z 0∆y−1) (73)

where

Zi =


yi0 0 0 ... 0 ... 0
0 yi0 yi1 0 0
... ... ...
0 0 0 ... yi0 ... yi,T−2

 (74)

According to standard GMM theory, an optimal choice of the inverse
weighting matrix VN is one that gives the most efficient estimator, in
other words the one that gives the smallest asymptotic covariance matrix
for bλGMM . Since the optimal weighting matrix is asymptotically propor-
tional to the inverse of the covariance matrix of the sample moments
(Verbeek (2000)), we have that the optimal matrix ought to satisfy

p lim
N→∞

VN = E(Z 0i∆εi∆ε0iZi)
−1 (75)

In the standard case where we do not impose any restrictions on the
covariance matrix of εit we can obtain the optimal weighting matrix
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using a first-step consistent estimator of λ and replacing the expectation
in (75) by a sample average:

V̂ opt
N = (

1

N

NX
i=1

Z 0i∆bεi∆bε0iZi)
−1 (76)

where ∆bεi is a residual vector obtained for instance by using VN = I
as a first-step consistent estimator. We have estimated here the optimal
weighting matrix without imposing restrictions of homoskedascity; in
particular for the estimation we do not even need the non-autocorrelation
assumption but this is needed for the validity of the moment conditions.

There is a whole literature on assumptions about the initial condi-
tions, homoskedasticity and mean stationarity with subtopics such as
estimation under stationarity, estimation under unrestricted initial con-
ditions, estimation under heteroskedasticity, time effects in AR models,
initial condition bias in short panels. Next to these, quite a number of
relatively recent papers discuss problems of unit roots, cointegration and
spurious regression within panel data. These latter problems are par-
ticularly relevant in very long time-series dimension of the longitudinal
data sets (if T → ∞). These are all very important themes and much
can be written on them, however we will not cover them in this general
report. The interested reader is advised to consult Arellano (2003) and
the further references therein for an excellent treatment of the subject
or Arellano and Honore (2001) for a shorter but concise overview.

4 Dynamic regression models

4.1 Models with exogenous regressors and unre-
stricted serial correlation

Consider models of the type

yit = αyi,t−1 + x0itβ + ηi + vit (77)

where we assume that

E(vit|xi1, ..., xiT , ηi) = 0 (78)

Although this would seem exactly the autoregressive model analyzed
in the previous section plus some exogenous variables, this is not the
case. While the autoregressive model was a time-series perspective of
modelling the persistence in y0s, hence we assumed the v0s serially un-
correlated, now we have an entirely different view. Lagged y is correlated
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by construction with η and lagged v, but it might even be correlated with
contemporaneous v if v is serially correlated, which is not precluded by
(78). Thus lagged y is in fact an endogenous explanatory variable in
(77) with respect to both η and v.
From assumption (78) we can work out, as in Arellano (2003),

E[xis(∆yit − α∆yi,t−1 −∆x0itβ)] = 0, ∀s, t (79)

We have therefore internal moment conditions that will ensure iden-
tification of the model despite the unrestricted serial correlation and the
endogeneity of y.
Applications of this model arise in testing life-cycle models of con-

sumption of labor supply with habits. In such models the parameter of
interest is the coefficient α of the lagged regressor, which measures the
extent of habits. This parameter could not be identified in the absence
of exogenous IV’s since the effect of the genuine habits would be indis-
tinguishable from the serial correlation in the unobservable. One cited
example in this stream of literature is Becker et al (1994). They consider
a model for cigarette consumption using US panel data:

cit = θci,t−1 + βθci,t+1 + γpit + ηi + δt + vit (80)

where cit - annual per capita cigarette consumption by state, in packs
and pit - average cigarette price per pack; β - discount factor. Becker
et al are interested in investigating whether smoking is addictive by
considering the response of cigarette consumption to a change in prices.

The idiosyncratic errors capture unobserved life-cycle utility shifters,
likely to be serially correlated. Thus even in the absence of addiction
(θ = 0), we would still expect cit to be autocorrelated, and in particular
to find a non-zero effect of ci,t−1 in (80). The identification strategy
relies thus on identifying θ, β and γ from the assumption that prices are
strictly exogenous relative to the unobserved utility shift variables.

4.2 Models with predetermined variables
The models in this section have idiosyncratic errors that are uncorre-
lated with current and lagged values of the conditioning variables, but
might be correlated with their future values, being "predetermined" in
this sense. The conditioning variables can be explanatory variables in
the equation or lagged values of these variables, but also external instru-
ments.
The moment conditions satisfied by the errors in the models with

predetermined variables are sequential moment conditions of the type

E(vit|zi1, ..., zit) = 0 (81)
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Take for illustration the partial adjustment model in (77) in the preced-
ing subsection and formulate its sequential moment condition require-
ment:

E(vit|yi,t−1,xit,ηi) = 0 (82)

It is interesting to seek the differences between this assumption above
and the corresponding assumption in the strictly exogenous model in
the previous subsection, namely expression (78). Arellano and Honore
(2001) tell us that there are two main differences. In the first place
(82) implies lack of autocorrelation in vit whereas the previous model
allowed for unrestricted serial correlation. Secondly, the assumption in
the strictly exogenous variables model from (78) implies that forecasts
of xit given xi,t−1, yi,t−1 and additive effects are not affected by yi,t−1.
In terms of identification, let us take the example of T = 3 in Arel-

lano and Honore (2001) where we had the following equation in first
differences

y3 − y2 = α(y2 − y1) + β0(x3 − x2) + β1(x2 − x1) + (v3 − v2) (83)

Using the exogenous variable model assumption, the parameters α, β0
and β1 are potentially identifiable just from the moment conditions

E(xis∆vi3) = 0, s = 1, 2, 3 (84)

Conversely, in the predetermined variables model, the moment condi-
tions that potentially identify α, β0 and β1 areE(yi1∆vi3) = 0

E(xi1∆vi3) = 0
E(xi2∆vi3) = 0

(85)

The problem is that the two models have only two moment conditions in
common which are not however sufficient to identify the three parameters
(Arellano (2003)).

5 Discrete choice models

The discrete or limited dependent variables combined with panel data
often complicates considerably the estimation. This happens because
in longitudinal data sets often the different observations on the same
unit are not independent which leads to correlation between different er-
ror terms and subsequently complicates the likelihood functions of such
models. One good overview of the literature in this specific fields is Mad-
dala (1987), while for an up-to-date presentation of the current status
of research in the area the reader can consult Arellano (2001).
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Consider for illustration a binary choice model:

y∗it = x0itβ + αi + εit (86)

where we observe yit = 1 if y∗it > 0 and yit = 0 otherwise. We can treat
α as a fixed unknown parameter which means that the log likelihood
function is given by

logL=
X
i,t

yit logF (αi + x0itβ)

+
X
i,t

(1− yit) log[1− F (αi + x0itβ)] (87)

Maximizing this function with respect to β and αi results in con-
sistent estimators only provided that T → ∞. This is known as the
incidental parameters problem.

Fortunately for linear models β can be identified using the within-
group estimator as long as T ≥ 2. The consistent estimator for β is
given by the solution bβ to the equation (Arellano (2001)):

1

TN

NX
i=1

TX
t=1

(xit − xi)[(yit − yi)− (xit − xi)
0bβ] = 0 (88)

However this does not solve our problem for nonlinear models and thus
we need to think of a way to maximize the likelihood. One idea is to find
a sufficient statistic for αi so that the distribution of the data given this
statistic does not depend on αi, and to use the likelihood conditional
on it so as to make inferences about β. This has been implemented
first in Andersen (1970) and it is known under the name of conditional
maximum likelihood estimator.

For the linear model with normal errors the sufficient statistic for α is
the mean yi. It is easy to show that for these linear setting, maximizing
the conditional maximum likelihood by using this statistic is equivalent
with using the within-group estimator for β. However the result cannot
be generalized to nonlinear models since it has been shown for instance
that no statistic of the type required here exists for the probit model,
reason why a fixed effects probit model cannot consistently be estimated
for fixed T (see Verbeek (2000) for a review).

In the random effects setting we assume lack of correlation in the
idiosyncratic error term

uit ≡ ai + εit (89)
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which implies that one can write the joint probability as

f(yi1, ..., yiT |xi1, ..., xiT , β) =
Z ∞

−∞

"Y
t

f(yit|xit, αi, β)

#
f(αi)dαi (90)

which requires in principle numerical integration over one dimension.
However this is extremely difficult and hence the most common practice
is to start with an assumption of multivariate normal distribution of
ui1,...,uiT (see Maddala (1987) for a more in depth discussion). This
brings us to the random effects probit model. In practice using standard
probit maximum likelihood is consistent, but inefficient. The results can
be used however in an iterative maximum likelihood procedure based on
the expression in (90).

There is a fast growing literature on discrete choice models with
panel data. It is not our purpose to cover here for instance maximum
score estimation (see Manski (1987)) or maximizing alternative types of
likelihood functions As also mentioned above, a good survey of recent
research in the field is contained in Arellano (2001).
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