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1 Introduction
This report provides a short and generally accessible overview of the technique of
quantile regression, with focus on introducing the method and discussing some
major applications, rather than exclusively devoting space to either a technical
summary of the theory or to a complete survey of recent advances in imple-
mentation, plenty of specialized literature having achieved that by now. To the
declared aim, two applications of quantile regression to survival analysis and
respectively to recursive structural equations models, with supporting empiri-
cal implementations from the literature, will be selected for analysis after the
basic quantile regression model and its critical features would have been briefly
reviewed.
Quantile regression has lately received much attention, both from a theo-

retical and from an empirical viewpoint. Defined in the simplest way, quantile
regression is a statistical procedure intended to estimate conditional quantile
functions. In analogy with classical linear regression methods, based on mini-
mizing sums of squared residuals and meant to estimate models for conditional
mean functions, quantile regression methods are based on minimizing asymmet-
rically weighted absolute residuals and intended to estimate conditional median
functions1 and a full range of other conditional quantile functions. The basic
motivation for using quantiles rather than simple mean regression is that the
stochastic relationship between random variables can be portrayed much better
∗Roger Koenker’s lecture notes from the recent Netherlands Network of Economics Work-

shop in Groningen, December 2003, will be used as one, though not the only, reference guide-
line throughout this paper.
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1A particular instance of quantile regression, the median regression minimizes sums of
absolute residuals and is estimated by the least absolute deviations (LAD) estimator, discussed
also in standard econometrics books like Greene (1993) or Wooldridge (2002). The median
regression has been analyzed already extensively in early papers such as Huber(1967) or
Koenker and Bassett (1978a).
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and with much more accuracy. As extensively discussed in Koenker and Bas-
sett(1978b), conventional least squares estimators may be seriously deficient in
linear models constructed on some non-Gaussian settings, where quantile re-
gression would provide more robust and consequently more efficient estimates.
The price paid in terms of loss of efficiency (to the least squares estimators)
at the normal distribution would moreover not outweigh the gain at the non-
Gaussian spreads. Thus quantile regression methods complement and improve
established means regression models.

To give a flavour of the possible applications of quantile regression methods
in economics, I will enumerate some of the subfields rich in empirical implemen-
tations. For an excellent and almost exhaustive treatment of the recent quantile
regression applications I suggest however the collection of studies in Fitzen-
berger, Koenker and Machada, eds (2002) or the more concise presentation in
Koenker and Hallock (2001). In economics there seems to be a rapidly expand-
ing empirical quantile regression trend that tries to make a case for the value
of "going beyond models for the conditional mean". Thus, quantile regression
has been widely employed for instance within labour or educational economics
to study wage determinants, discrimination effects, transition or duration data,
trends in income inequality or effects of socioeconomic characteristics and pol-
icy variables on educational attainment. Quantile regression methods have also
been used lately in micro-demand analysis and there even seems to be a grow-
ing literature using quantile regression in empirical finance and particularly,
on value at risk. In general quantile regression proves to be extremely useful
whenever one is interested in focusing on particular segments of the analyzed
conditional distribution, or for instance on upper or lower quantile reference
curves as a function of several covariates of interest, and this without having to
impose any sort of strict parametric assumptions.

I will continue by presenting the basics and some straightforward properties
of the quantile regression model in the second section of this report, where
the fundamental framework, interpretation and robustness of the estimation,
equivariance properties and the quantile treatment effect, next to computational
aspects, will all be briefly examined2. The implementation of the technique in
the selected applications of survival analysis and respectively recursive structural
models, is left for the third part of this paper3, while the last section sums up

2 Inference and asymptotics in quantile regression are not reviewed in this report, given
the sizeable literature that does this very well. I suggest Koenker and Bassett (1978) for the
elementary form of the quantile regression asymptotic theory and recommend some survey
studies for the alternative ways of inference: survey of rank based tests inference in Koenker
(1997), survey of inference based on resampling methods in Buchinsky (1998) and a survey of
general goodness of fit measures and related inference methods based on the whole quantile
regression progress in Koenker and Machado (1999) , all this as probably sufficient background
for a reasonable general perspective on inference in quantile regression.

3 I will not discuss at all the recently emerging literature on nonparametric quantile re-
gression models and their applications, although this is one of the most fascinating areas in
quantile regressions nowadays. For reasons of space and scope, polynomial methods, quantile
smoothing splines, penalized triograms and other techniques will thus be overlooked herein.
The interested reader is referred to articles such as Chaudhuri (1991), Koenker, Ng and Port-

2



the report and concludes.

2 Fundamentals and Features of Quantile Re-
gression

2.1 Basic Model and Interpretation

The quantile regression classic model has been introduced by Koenker and Bas-
sett (1978b) as an extension from the notion of ordinary quantiles (also called
"percentiles") in a location model, to a more general class of linear models in
which the conditional quantiles have a linear form. To briefly recall the ordi-
nary quantile, consider a real valued random variable Y characterized by the
following distribution function

F (y) = Pr(Y ≤ y) (1)

Then for any τ ∈ (0, 1), the τ -th quantile of Y is defined as follows:

Q(τ) = inf{y : F (y) ≥ τ} (2)

The median is thenQ(1/2), the first quartileQ(1/4) and the first decileQ(1/10).
The quantile function provides a complete characterization of Y , just like the
distribution function F . The quantiles can be written as solutions to the follow-
ing optimization problem: for any τ ∈ (0, 1), define the piecewise linear "check
function"

ρτ (u) = u(τ − I(u < 0)) (3)

where I(.) is the usual indicator function. The solution to the minimization
problem is then bα(τ) = argminξ∈RE[ρτ (Y − ξ)] (4)

The sample analogue of Q(τ) is based on a random sample {y1,...,yn} of
Y . The τ -th quantile can then be identified, in the spirit of (4) above, as any
solution to: bατ = argmin

ξ∈R

nX
i=1

ρτ (yi − ξ) (5)

Let xi, i = 1...n, a K × 1 vector of regressors. We can then write the
equivalent of expression (1) as:

Fuτ (τ − x
0
iβτ |xi) = Pr(yi ≤ τ |xi) (6)

which is essentially a different form derived from the more familiar:

yi = x0iβτ + uτ i (7)

noy (1994) or Koenker and Mizera (2003), and the references therein, for more information
on these topics.
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where the distribution of the error term uτ i is left unspecified, the only con-
straint being the (usual) quantile restriction Qτ (uτ i |xi) = 0.
Using as analogy the estimation of conditional mean functions as in

bβ = argminβ∈RK nX
i=1

(yi − x0iβ)
2 (8)

the linear conditional quantile function

QY (τ |X = x) = x0iβτ (9)

can be estimated by solving the equivalent of expression (8) for this case:

bβτ = argminβ∈RK nX
i=1

ρτ (yi − x0iβ) (10)

We have not yet asked the question about the interpretation of quantile
regression. A least squares estimator of the mean regression model would be
concerned with the dependence of the conditional mean of Y on the covariates
X. The quantile regression estimator tackles this issue at each quantile of the
conditional distribution, providing thus a more complete description of how the
conditional distribution of Y givenX = x depends on x. In other words, instead
of assuming that covariates shift only the location or the scale of the conditional
distribution, quantile regression looks at the potential effects on the shape of
the distribution as well4 . Let us look also at a more practical question: what
interpretation does one attach to the quantiles’ coefficients? As discussed for
example in Buchinsky (1998), the partial derivative of the conditional quantile
of y (see (9) above) with respect to one of the regressors, say the j-th one, is to
be read as the marginal change in the τ -th quantile due to the marginal change
in the j-th element of x. If further, as in the hypothesis in this section, x has
K distinct variables, then this derivative would simply be the coefficient on the
j-th variable, βj . Caution is required however when interpreting this result: it
certainly does not imply that a subject who happens to be in the τ -th quantile
of one conditional distribution would still find himself/herself there, had the
corresponding value of his/her x changed.

In the introduction to this report I made a reference to the robustness of
quantile regression relative to the case of the mean regression estimates. Since
robustness to distributional assumptions is in general a crucial consideration
throughout statistics, it is compulsory to say a few more words about it, in the

4A straightforward example can be considered for illustration: the effect of an on-the-job
training on the length of the participants’ current unemployment spells. It might well be that
the shortest spells will become longer as a result of the training program, while the very long
spells could be dramatically reduced. In such a case the mean treatment effect might not
capture any effect (if two opposite effects in different segments of the distribution completely
average out) or it might indicate a distorted one (if one effect dominates the other and they are
both significant), while clearly the shape of the unemployment durations would be significantly
altered.
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context of the quantile regression. There is indeed very good news about the
robustness interpretation, in that the estimates and the inference process have
an inherent distribution-free character given that quantile estimation is influ-
enced only by the local behavior of the conditional distribution of the response
near the specified quantile. The signs of the residuals are the only thing that
matters in the determination of the estimates and thus outliers in the values of
the response variables influence the fit in so far as their being above or below
the fitted hyperplane, but how far below or above is really irrelevant. There
is however more than meets the eye and not everything is so positive: while
we have just seen that the quantile regression estimates are inherently robust
to contamination of the response observations, they can be quite sensitive to
contamination of the design observations.

2.2 Monotone Transformations Equivariance and Quan-
tile Treatment Effect

Quantile regression has a very important property that sharply distinguishes
it from a linear mean regression. This is the property of equivariance to any
monotone transformations5, see e.g. Koenker and Geiling (2001), for a thorough
treatment. In few words, considering any monotone function h(.), we will have
the following expression holding

Qh(Y )|X(τ |x) = h(QY |X(τ |x)) (11)

This follows easily (given the monotonicity of h) using the next intermediary
step:

Pr(T < t|x) = Pr(h(T ) < h(t)|x) (12)

With the equivariance transformation property one can essentially decouple
the potentially conflicting objectives of transformations of the response vari-
able, which is obviously not possible when estimating transformation models
for conditional mean relationships, where we would have the generally true

E(h(Y )|X) 6= h(E(Y |X) (13)

The equivariance property has a particularly useful application in settings
which deal with censorship of the observed response variable, see for instance
Powell (1986) in the case of fixed censoring. Powell (1986) made the crucial
observation that linear conditional quantile models can solve the fixed censoring
issue by a simple nonlinear modification of the response function. The matters
are slightly more complicated in the case of random censoring but advances have
been registered also in here, e.g. Honore, Powell and Khan (2000). Buchinsky
(1998) provides a recent concise survey in the topic of quantile regression applied
to solve censorship of the observed response variable..

5Particular cases of quantile regression equivariance under monotone transformations are
the scale equivariance, regression shift equivariance and reparameterization of design equivari-
ance. The interesed reader can consult e.g. Buchinsky(1998) for more discussion on these
specific equivariance properties of the quantile regressions.
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It is maintained that the simplest formulation of quantile regression is the
two-sample treatment-control model. Lehmann (1974) was the first to propose a
general model of treatment response instead of the classical experimental design
in which the treatment induces a simple location shift of the response distrib-
ution. So suppose that the treatment adds by hypothesis an amount ∆(x)
while the response of the untreated subject would be x. Then, paraphrasing
Lehmann, the distribution G of the treatment responses is that of the random
variable X + ∆(X) where X is distributed according to F . Special cases of
this simple quantile treatment effect model include the location shift model for
which the treatment effect is a constant, ∆(X) = ∆0, and the scale shift model
where the treatment addition is a first degree polynomial in X: ∆(X) = ∆0X.
Following Doksum (1974), if ∆(x) is defined as the "horizontal distance"

between F and G at x, so that

F (x) = G(x+∆(x)) (14)

then one can uniquely define ∆(x) and express it as follows:

∆(x) = G−1(F (x))− x (15)

Or this is exactly the quantile treatment effect6; by performing the variable
change τ = F (x), we can write (15) as follows

δτ = ∆(F
−1(τ)) = G−1(τ)− F−1(τ) (16)

Subsequently, in the 2-sample setting that we discuss here, we can estimate δ(τ)
easily: bδτ = bG−1n (τ)− bF−1m (τ) (17)

with Gn and Fm denoting the empirical distribution functions of the treatment
and control observations, based on n and m observations respectively. Now, if
we think of the quantile regression model for the binary treatment problem, we
will have

QYi(τ |Di) = ατ + δτDi (18)

with Di denoting the treatment indicator, Di = 1 indicating treatment and
Di = 0 indicating control. The quantile treatment effect can then be estimated
directly by solving the following optimization problem:

(bατ ,bδτ )0 = argmin(α,δ)∈R2 nX
i=1

ρτ (yi − α− δDi) (19)

The solution yields½ bατ = F−1m (τ), corresponding to the control samplebδτ = G−1n (τ)− F−1m (τ), as claimed above in (17)
(20)

6This expression in (15) is also the essence of the QQ-plot, which has has quite some
background as graphical diagnostic device. For instance, if F and G are the same, then
G−1(F (x) will lie along the 45 degree line in the QQ plot. Quantile regression is thus a way
of extending the traditional two-sample QQ plot and related methods to general regression
settings with continuous covariates.

6



I will examine more closely a particular example where quantile treatment
effects are related to duration analysis, mainly looking at the paper by Ma and
Koenker (2003) in the last section of this report.

2.3 Computational Aspects

It would not be too much of an advantage applying the quantile regression
technique if its computation were too cumbersome. Fortunately, this is not
the case since quantile regression has a convenient linear programming (LP)
representation. This fact has important consequences from both theoretical and
practical standpoints. I will not make a target from summarizing the bulk of the
literature on this topic, but rather follow Buchinsky (1998), who discussed the
computational issues in quantile regression concisely and from a non-technical
perspective.

Using expressions (7) and (10) in the presentation of the basics of the quantile
regression model above, we can write yi as a function of only positive elements
and then translate it into matrix notation so that we emphasize the primal
formulation as LP. One can thus write successively:

yi =
KX
j=1

xijβτj + uτj =
KX
j=1

xij(β
1
τj − β2τj ) + (ετi − ντ i) (21)

with β1τj , β
2
τj , ετ i and ντi , non-negative (j = 1,K, i = 1, n). The matrix

notation for the primal LP problem is then

min
z

c0z st. Az = y, z ≥ 0 (22)

where A = (X, −X, In, −In), z = (β1
0
, β2

0
, u0, v0)0, c = (00, 00, τl0, (1− τ)l0)0;

further In is the n dimensional identity matrix, 00 is a K×1 vector of zeros and
l is an n×1 vector of ones. The dual side of the LP is easy to expose now, after
having obtained (22):

max
w

w0y st. w0y ≤ c0 (23)

The duality theorem implies that solutions exist for both formulations if X
is a full rank matrix. Further, the equilibrium theorem of LP guarantees the
optimality of this solution. For a more technical but still accessible perspective
on LP in general, the interested reader could consult the extensive discussion
on numerical methods in Judd (1999).

As far as the computation algorithms for quantile regression are concerned,
in the 1940’s it was recognized that the median regression could be formulated
as an LP program, and the simplex method has been since the most employed
method to solve it. The most popular algorithm remains even today the one
by Barrodale and Roberts (1973, 1974), algorithm which has been implemented
in most statistical software packages. The mechanism is the following: at each
step there is a trial of p initial observations whose exact fit may constitute
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a solution. The Barrodale-Roberts algorithm computes next the directional
derivative in each of the 2p directions resulting from removal of one of the
current basic observations and takes a positive or a negative step; the algorithm
stops when none of these directional derivative is negative, after having always
chosen the direction of the most negative, steepest descent, and having gone
in that direction until the objective function ceased to decrease. In essence
what the algorithm does is find the solution to a weighted quantile problem
by making use of a modified simplex strategy. The method performs quite
well on reasonably low numbers of observations, where it does achieve speeds
comparable to the corresponding least squares solutions. The dilemma appears
however for larger number of observations (say n in the order of 100, 000 and
more): the simplex tool becomes considerably slow. There are some recent
developments of interior point methods for LP, highly effective for such large
problems; one of these can be consulted for instance in Portnoy and Koenker
(1997). Portnoy and Koenker basically show that a combination of interior point
methods and effective preprocessing can render large scale quantile regression
computation competitive with least squares problems of the same size.

One more observation to make with regards to the computational aspects
of quantile regression is that, as a great advantage of the LP representation,
an entire range of solutions can be efficiently computed by purely parametric
estimation. Hence, at any solution bβτ0 , there is an interval of quantiles τ over
which this solution remains optimal; since it is straightforward to compute the
endpoints of this interval, one can solve iteratively for the entire sample pathbβτ with one simplex pivot at each of these endpoints.
3 Applications of Quantile Regression

3.1 Quantile Regression for Duration Models

There are many potential econometric applications of quantile regression to sur-
vival analysis, as this area have proven to be quite productive for the growth
of semi-parametric methods. In this sense Chaudhuri, Doksum and Samarov
(1997) have argued that quantile regression provides a unifying approach for
transformation models more generally, including also a variety of duration mod-
els such as proportional hazards, proportional odds, accelerated failure time, etc.
A few studies that implement the technique for survival data analysis are for in-
stance Koenker and Geiling (2001), who describe a sort of large scale application
in experimental demography and make a link to the Lehmann (1974) quantile
treatment effect; then we have studies like Horowitz and Neumann (1987) or
Fitzenberger (1997), who implement quantile regression in the analysis of du-
ration of employment spells;.there would probably be many others, I shall not
claim that I attempted to exhaust the list. In the remaining of this subsection I
will revisit a study in the category of those dealing with unemployment spells,
choosing a recent paper by Koenker and Bilias (2001).

Koenker and Bilias argue in their paper that quantile regression can play a
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constructive role in the analysis of duration spells, offering a more flexible and
more complete approach than the existing conventional method. The authors il-
lustrate this by performing a re-examination of the data from the by now famous
Pennsylvania Re-employment Bonus Experiments conducted between 1988-89
and intended to test the efficacy of cash bonuses paid for early re-employment
in shortening the length of insured unemployment spells. Drawing on previous
work in Koenker and Geiling (2001), Koenker and Bilias (2001) stress a general
formulation of the experimental treatment effect introduced in Lehmann (1974)
or Doksum (1974) that I also overviewed in the previous section. A link be-
tween the transformation models investigated under the equivariance properties
above and survival analysis is made, which will constitute the essence of the
methodology employed in their article.

Doksum and Gasko (1990) start by putting forward a link between duration
analysis and the general transformation model

h(Ti) = x0iβ + ui (24)

Many survival models in parametric or semiparametric models can actually
be expressed in the form above: what we have in (24) is translated in some
monotone transformation of a survival time Ti represented as a linear predictor
plus an iid error. No matter whether we consider a Cox proportional hazard
model or a Weibull survival model, they can all be written in a transformation
model form as above (see Koenker and Bilias (2001) for the extended discussion).
The common item in these models is that we assume the error to be iid, which in
other words means that for some suitable h(.) one can express the transformed
survival times h(T ) as a pure location shift in the covariates x. Or this clearly
imposes some very drastic constraints on the relationship between the covariates
and the survival distribution. In response to this and as an alternative to the
location shift model, Koenker and Bilias (2001) propose a family of linear-in-
parameters quantile regression models for the transformed survival time h(T ),

Qh(T )(τ |x) = x0βτ (25)

In this model, potentially all the parameters of the p-vector βτ depend now
on the specified quantile, τ . In particular, allowing for the slope coefficients
of βτ to depend on τ , we can introduce various forms of heterogeneity in the
conditional distribution of h(T ) on the covariates.

Before I present the analysis of the experiment and the conclusions drawn
by Koenker and Bilias (2001), some specific insights in the data and the ex-
periment per se, are necessary. While I assume that the reader is mode or less
familiar with the US Bonus experiments (Meyer (1995) for instance provides
some excellent reviews of and some general conclusions about the re-employment
bonus experiments in, New Jersey, Illinois and Pennsylvania), I will recall the
experimental design by presenting a summary table and some essential remarks:
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Group Bonus Amount Qualification Period
Controls 0 0
Treatment1 Low' $500 Short=6 weeks
Treatment2 Low Long=12 weeks
Treatment3 High' $1000 Short
Treatment4 High Long
Treatment5 Declining Long
Treatment6 High Long

To start with, all claimants who became unemployed and registered for un-
employment benefits were randomly assigned in either the control group or one
of the 6 treatment groups. The groups differ between them on more coordinates:
i) on the type of bonus paid, a "low" amount of about 3 times the weekly

unemployment insurance (UI) benefit and a "high" amount of about 6 times
the UI; the "declining" bonus declined from the "high" level to zero, over a 12
week period;
ii) on the length of the qualification period: a "short" period of 6 weeks and

a "long" period of 12 weeks.

As for the rationale behind the Pennsylvania experiment (and the other
related experiments in Illinois and New Jersey), the questions that were in-
tended to be answered were two: firstly, could policy relevant treatments yield
detectable cost savings to existing UI benefit programs, and secondly, how sen-
sitive are program costs to various elements of the treatment design?

A classical "careful" (the quotation is from Koenker and Bilias (2001)) frame-
work for the analysis of this kind of duration data is performed in Meyer (1996)
. There a Cox proportional hazard analysis of the similar bonus experiments in
Illinois is done, with Meyer handling the qualification period by the introduction
of a time-varying covariates that would permit a discrete jump in the treatment
effect at the end of the qualification period. Koenker and Bilias (2001) debate
however the plausibility of such a jump, although they do stress that accommo-
dation of time-varying covariate effects such as in the Cox model is an important
challenge in extending the applicability of quantile regression to survival data
analysis.

The central idea in designing the basic model of Koenker and Bilias (2001)
boils down to assuming that the logarithm of the duration, using weeks as time
unit, of subjects’ spells on UI benefits has linear conditional quantile function
of the form

Qlog(T )(τ |x) = x0β(τ) (26)

Koenker and Bilias (2001) motivate the choice of the log transformation by the
desire to linearize the parametric specification and for the sake of the inter-
pretation. One can see clearly the role of the transformation in the quantile
regression setting, with (25) above implying

QT (τ |x) = h−1(x0β(τ)) (27)
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Inter alia, the model includes the following effects: indicators for the 5 treatment
groups, with treatments 4 and 6 pooled (see table above); indicators for female,
black and Hispanic respondents; number of dependents, with 2 indicating two
or more dependents; indicators for whether the respondent was young (age less
than 35) or old (older than 54). The results from the estimation of the model
can be visualized in plots denoting one coordinate of the vector-valued function,bβ (τ), viewed as a function of τ ∈ [α, 1− α]. In Koenker and Bilias (2001) α is
chosen to be .20, effectively neglecting thus the proportion of the sample that
are immediately reemployed in week one and those whose employment exceeds
the insured limit (26 weeks).

Now, before actually discussing the estimates, one should understand how
to interpret them in the light of the survival analysis. Basically, the easiest case
would be that we are in the pure location shift model in which, looking back
at the general form (24), the expression would correspondent to the classical
accelerated failure time model

log Ti = x0iβ + ui, with ui iid from some distribution F (28)

Empirically this would correspond to the coefficients bβτ oscillating around a
constant value and thus alluding to the fact that the shift due to a change in
the covariates is constant over the entire observed range of the distribution.
Another possible outcome would be the linear location-scale model

log Ti = x0iβ + (x
0
iγ)ui, with ui taken again iid (29)

The difference with (28) is that now the covariates are allowed to influence
both the scale and the location of the conditional distribution of durations.
Observationally this would be equivalent to the slope coefficients bβτ looking
just like the intercept coefficient up to a location and a scale shift.

So what is actually observed by doing the estimation of this model? Basically
treatments 1,2,3 and 5 are estimated to be only marginally significant, achieving
a rather modest reduction of duration only in the center of the distribution
of about 10%. On the contrary, the combined treatments 4 and 6 (offering a
high bonus and long qualification period) induced a 15% reduction in median
duration, with a much stronger statistical significance than seen in the other
treatments. The authors also noted that no treatment effect is observed in the
tails, implying that the treatments had no effects in changing the probability of
immediate reemployment (week one) or in affecting the probability of durations
beyond the insured period (beyond week 26). Furthermore, with regards to the
covariates considered, women seem to be 5 to 15% slower than men in completing
durations, Blacks and Hispanics are much quicker reemployed than whites, the
young tend to get reemployed earlier than the middle aged and much earlier
than the old. These would be basically the main estimation results from the
model of Koenker and Bilias (2001).

The more important question is of course why we had to go through such
a procedure like quantile regression to do all this, or in other words what did
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quantile regression analysis bring more when compared with a more conven-
tional type of survival analysis? As we have seen in the discussion above, the
bonus effect gradually reduced durations from a null effect in the lower tail to a
maximum reduction of 10% (for treatments 1-4 and 5) and 15% (for the pooled
treatments 4 and 6) at the median and then it gradually returned again to a
null effect in the upper tail. Or this is clearly not a support for the location
shift paradigm from (28), which would be estimated by conventional approaches,
since this would require that the treatments exert a constant percentage change
in all durations. Actually the finding is in perfect agreement with the timing
imposed by the qualification period of the experiment.

The study by Koenker and Bilias (2001) seems to actually recommend de-
cision makers that, since the effect of the bonus experiment is considerably
attenuated away from the median and essentially null in both the upper and
the lower tails of the distribution, the extrapolated effect to the whole eligible
population would render a modest net saving to the UI system. However, the
plus is to be searched for really in the methodology employed than in the pos-
sible policy outcome conclusion7. It is more than clear that providing a way to
focus on particular regions of the conditional duration distribution, quantile re-
gression proves to be a more flexible approach than traditional survival analysis
methods.

3.2 Recursive Structural Equation Models

Before examining the contribution of quantile regression to the structural mod-
els, let us first define some essential notions that will be used throughout this
exposition. Chesher (2003) elegantly defines a "structure" as being:
1. a system of equations delivering unique values of observable outcomes

given values of covariates and latent variates, and,
2. a conditional probability distribution of latent variates given covariates

Chesher further deals in his paper with the identification issue in structural
models: each structure implies a conditional distribution of outcomes given co-
variates and implicitly the same distribution may be generated by different
structures; in this case a structural feature that takes different values than its
value in the data generating structure cannot be identified. This can be equiv-
alently written as a feature of a structure being identified when among any set
of observationally equivalent admissible structures, the value of the structural
feature does not vary. The restrictions defining admissible structures constitute
what we call a "model".

I will not delve further in the study of Chesher (2003) but instead consider
a more pragmatic perspective of estimation of the type of structural models
in Chesher(2003): namely, I will shortly review the paper by Ma and Koenker
(2003). This article discusses two classes of quantile regression methods for
the recursive structural equation models of Chesher (2003), one based directly

7Meyer (1995) for instance does give some very persuasive arguments for implementing
the bonus system on a larger scale resorting to incentive effects on eligibility.

12



on the identification strategy of Chesher, the second being a control variate
approach. An empirical application of the methods to the study of the effect of
class size on the performance of students is also contained in Ma and Koenker
(2003).

There is some literature on the estimation of the structural equation model
starting in the 80’s. Amemiya (1982) was essentially the first study to con-
sider this topic, showing the consistency and asymptotic normality of a class
of two-stage median regressor estimators. More recent work has extended the
conditional median problem: for instance Abadie, Angrist and Imbens (2002)
have considered quantile regression methods for estimating endogenous treat-
ment effects focusing on the binary treatment case; Chesher (2003) has expanded
considerably the scope of quantile regression methods for structural econometric
models by considering triangular stochastic structures and conditioning recur-
sively so that the structural effects are identified and characterized. These latter
models of Chesher (2003) were used then in Ma and Koenker (2003) for estima-
tion and inference.

Consider the nonlinear recursive model:

Yi1 = ϕ1(Yi2, xi, νi1, νi2) (30)

Yi2 = ϕ2(zi, xi, νi2) (31)

where we assume that νij is iid with νij ∼ Fj (j = 1, 2). The pairs (νi1,νi2)
are also independent of (zi, xTi )

T . Other assumptions are that ϕ1 is assumed
strictly monotonic in v1 and differentiable with respect to Yi2 and x, while
ϕ2 is strictly monotonic in ν2 and differentiable in z and x. Having all these
conditions fulfilled one can write the conditional quantile functions:½

Q1(τ1|Q2(τ2|x, z), x) = ϕ1(Q2(τ2|x, z), x, F−11 (τ1), F
−1
2 (τ2))

Q2(τ2|x, z) = ϕ2(z, x, F
−1
2 (τ2))

(32)

In order to proceed with the estimation, the model is described further by
expressions (30) and respectively (31), but this time it is explicitly assumed that
the functions ϕ1 and ϕ2 are known up to some finite dimensional parameter
vectors α and β, respectively. Under these conditions we will have an inverse
function for ϕ2 w.r.t v2 and so if we denote this inverse function with eϕ2 we
have

νi2 = eϕ2(Yi2, zi, xi;β) (33)

and it follows immediately that

Yi1 = ϕ1(Yi2, xi, vi1, eϕ2(Yi2, zi, xi;β);α) (34)

Ma and Koenker (2003) write the conditional functions of Y1 and Y2 as

Q1(τ1|Yi2, xi, zi) = h1(Yi2, xi, zi; θ)
Q2(τ2|zi, xi) = h2(zi, xi;β)

(35)
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In the light of this formulation, fixing τ1 and τ2 implies that θ (τ1) and β(τ2)
can be estimated by solving the following optimization problems:

bθ (τ1) = argmin
θ∈Θ

nX
i=1

σi1ρτ1(Yi1 − h1(Yi2, xi, zi; θ)) (36)

and respectively

bβ (τ2) = argmin
β∈B

nX
i=1

σi2ρτ2(Yi2 − h2(xi, zi;β)) (37)

with the weights σij being strictly positive.

One objective of the study in Ma and Koenker (2003) is the estimation of
the weighted average quantile treatment effect implied by Chesher (2003). To
this extent the authors consider first the class of weighted average derivative
estimators:

bπ1(τ1, τ2) = nX
i=1

wi

"
∇y
bh1(τ1|y, xi, zi,bθ) + ∇z

bh1(τ1|y, xi, zi,bθ)
∇z
bh2(τ2|xi, zi, bβ)

#
(38)

evaluated at y = h2(τ2|xi, zi, β). For the structural effect of x the form is of
course similar to the one above in (38):

bπ2(τ1, τ2) = nX
i=1

wi

"
∇x
bh1(τ1|y, xi, zi,bθ)− ∇z

bh1(τ1|y, xi, zi,bθ)
∇z
bh2(τ2|xi, zi, bβ) ∇x

bh2(τ2|xi, zi, bβ)#
(39)

The weights are by hypothesis positive and summing up to 1. A convenient
choice exploited in Ma and Koenker (2003) is wi ≡ n−1.
The estimator obtained

bπn(τ1, τ2) = (bπ1(τ1, τ2), bπT2 (τ1, τ2))T (40)

is based on Chesher’s (2003) identification strategy. According to Ma and
Koenker, its advantage rests in the fact that this estimator takes a rather skep-
tical attitude toward the original model and is thereby based on a rather loosely
restricted form of the two conditional quantile functions.

Ma and Koenker (2003) derive also a control variate estimator for the struc-
tural quantile treatment effect. In order to apply this approach, the conditional
τ2 quantile function of Y2 has to be estimated so that we can recover an estimate
of ν2(τ2) = ν2 − F−12 (τ2). In this respect, in analogy to (35) above, we denote

Q1(τ1|Yi2, xi, νi2(τ2)) = g1(Yi2, xi, νi2(τ2);α(τ1, τ2))
Q2(τ2|zi, xi) = g2(zi, xi;β(τ2))

(41)

Solving similarly to (37) for

bβ(τ2) = argmin
β∈B

nX
i=1

σi2ρτ2(Yi2 − g2(zi, xi;β)) (42)
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the conditions on ϕ2 ensure, as previously for the other estimator, that one can
invert to obtain

ν2 = eϕ2(Y2, z, x, β) (43)

and thus, successively:

F−12 (τ2) = eϕ2(g2(z, x;β), z, x;β) (44)

bνi2(τ2) = eϕ2(Yi2, zi, xi; bβ)− eϕ2(g2(zi, xi; bβ), zi, xi; bβ) (45)

Having (45) we can estimate g1(.) and then solve for bα(τ1, τ2) once F−11 (τ1)
is stored into the new parameter vector a:

g1(Yi2, xi,bνi2(τ2); a) = ϕ1[Yi2, xi, F
−1
1 (τ1),bνi2(τ2);α] (46)

bα(τ1, τ2) = argmin
a∈A

σi1ρτ1[Yi1 − g1(Yi2, xi,bνi2(τ2); a)] (47)

As a comparison between the two estimation frameworks now, we see that
this control variate method is valid regardless of the dimension of zi, meaning
that as long as the model is identifiable bνi2(τ2) has information on all of the
available instruments, as seen from the derivations in expressions (41)-(45), and
does not necessarily need a single instrumental variable z available, without
over-identification, as we need for the derivations in (35)-(39) above. However
in the first estimator zi was introduced directly and did not need a parsimonious
construction like in the second case.

Ma and Koenker (2003) also describe an extension of their results to a sys-
tem of m structural equations and to this extent use again Chesher (2003) who
proved that there are no real impediments to extension of the recursive struc-
tural model to more than 2 equations. While I will skip the review of the rather
technical asymptotics treatment, which would take up considerable space, I shall
continue by shortly describing the empirical implementation in Ma and Koenker
(2003).

The authors reconsider an application by Levin (2001) investigating the ef-
fect of class size on student performance in Dutch primary schools. The data
used is the first wave of the PRIMA cohort study, which contains detailed infor-
mation on Dutch primary school students in grades 2,4,6, and 8 and information
on the associated teacher and school characteristics for 1994/1995. This com-
prehensive survey of primary education in the Netherlands can therefore enable
the testing of a series of very interesting links between scholastic achievements
(in this context the subjects were tested with regards to intelligence, reading
abilities, the Dutch language and mathematics) of the pupils, their characteris-
tics, their socioeconomic background as well as class and school level features.
The authors use about 450 schools from about the 700 in total in the survey,
considering only grades 4,6, and 8, which are pooled together in the analysis.
Since it is not in our purpose and it would take up too much space, I shall ignore
here otherwise extremely important considerations on the model specifications,
particularly concerns on the exogeneity of the class size and by implication, on
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the causality mechanisms at play. The approach to the modelling is based on a
conventional linear structural equation model:

y = α0 +Xiα1 +Xcα2 +Xsα3 + Y δ + u (48)

Y = β0 +Xiβ1 +Xcβ2 +Xsβ3 + Zγ + U (49)

where math or language test scores are denoted by yi for student i in class c
and school s; Xi are pupil i’s individual characteristics such as gender, IQ,
socioeconomic status, peer effects; Xc are class c’s characteristics including
teacher’s experience; Xs are school s’s characteristics including school denomi-
nation (public/non-public); Y is the covariate for class size and Z denotes the
instrument for class size; u and U designate random components. Z is a very in-
teresting IV representing the reported weighted school enrollment (WSE) to the
Dutch Ministry of Education8 with weights determined by the socioeconomic
status of the students. It seems clear that the WSE should be closely related
to the actual class size but that it should not have any direct relationship with
the students’ performances, conditional on characteristics.

After some specification search which is inherent in this sort of modelling,
Ma and Koenker (2003) select a final model where the class size is allowed to
influence both the location and the scale of the student performance distribution.
That means, that with reference to the random components u and U from (48)
and respectively (49), the following apply:

ui = (λνi2 + νi1)(Yiξ + 1) (50)

Ui = νi2 (51)

with ν1 and ν2 independent of one another and iid over individuals. Both
estimation frameworks discussed above are used. Ma and Koenker (2003) ob-
serve that when the model is correctly specified both methods yield consistent
estimators, as expected from the theoretical analysis, with the control variate
estimate being more efficient.

In terms of structural estimation upshots, both estimation methods perform
similarly, which sort of provides a first support for the model specification.
The findings are briefly that, as far as class size effects on language scores are
concerned, for weaker students the larger classes are better, for students at
the median class size effects are not significant and for better students smaller
classes appear to be marginally profitable. As for the class size effect on math
scores, for weaker students, contrary to the language situation, smaller classes
are better, while for the average and better students the class size effect is not
significant.

8The Dutch Ministry of Education imposed a new funding allocation rule during the time
period of the first PRIMA experiment wave: each primary school had to report this WSE
variable and on its basis the schools were allocated funding to each school, the funding deter-
mining how many teachers the school could hire. The WSE variable has been used as an IV
in Levin (2001) and has been taken over to Ma and Koenker (2003) from there.
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The important conclusion is that the class size has no significant influence
on median performance in either language or math, result which is consistent
with previous literature investigating the same relationships by employing con-
ditional mean estimation. The difference with this previous literature (very
much the biggest part of the existing literature actually) is that seemingly one
should be cautious when interpreting findings of insignificant mean effects since
they can arise from averaging incorrectly opposite significant benefits for dif-
ferent locations on the distribution conditional on covariates: from the case of
the language performance in this context for instance, significant benefits from
reductions in class size for good students and significant benefits from increases
in class size for poorer students9.

4 Summary and Conclusions
This report presented a general overview of the quantile regression method, con-
sisting of a non-technical introduction to the basic model and its crucial features
and of a short review of two major applications. We have seen that quantile
regression offers an extension of univariate quantile estimation to estimation of
conditional quantile functions and that it complements the established mean re-
gression methods by adding more flexibility in the estimation and more robust-
ness particularly in non-Gaussian distribution settings. The covariate effects
are allowed to influence location, scale and shape of the response distribution
unlike conventional techniques which usually investigated location-shift para-
digms. Furthermore, by focusing on local parts of the conditional distribution,
quantile regression methods offer a useful deconstruction of conditional mean
models. We have also learned that quantile regression is a powerful tool applied
to duration analysis in general and that it provides excellent assistance to el-
egantly solve structural equation models, these being however just two of the
successful recent applications of quantile regressions, far too many as a whole
to be discussed in one paper. Despite the fact that the bulk of the specialized
literature can still be viewed as paying tribute to the traditional mean regres-
sion approach, quantile regression appears to convince more and more. Indeed,
quantile regression promises to be a challenging but fascinating research field
from a theoretical point of view and at the same time, a technique ever growing
and reaching out for more and more applications, from an empirical perspective.
In fewer words and probably most concisely, quoting from Koenker and Hallock
(2001), "quantile regression is gradually developing into a comprehensive strat-
egy for completing the regression picture".

9Ma and Koenker (2003) stress several times in their paper that of course it is not changes
in class size per se that produce academic gains or losses, but their combination with other
instructional practices and institutional settings. Nonetheless and as a sequel to what has been
just stated, the crucial point here is that structural methods based on quantile regression may
be able to constructively contribute to the policy debate around these issues, by providing a
more nuanced view of the apparently heterogeneous effects of the class size.
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