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Abstract
This web appendix contains technical notes concerning the estimation

procedures in our paper Buhai and Teulings (2013). We present full details
of our wage-equations system FGNLS estimation�including how to correct
the standard errors of the FGNLS parameter estimates for the variability
of the tenure distribution parameters estimated in the �rst SML step. In
our context, this two-step variance adjustment turns out not to matter at
all.

1 Summary of our 2-step estimation procedure

The parametric speci�cation we used for the tenure distribution parameters 
,
�, and �z was the following:


 = exp (!0 + !1S + e
) (1)

� = �0 + �1S + e�

�z = �0 + 
� (�1S + e�)

where e
 and e� are normally distributed, uncorrelated, random worker
e¤ects with mean 0 and standard deviations �
 and ��.
The �nal log likelihood for the �rst estimation in the paper, namely the ML

estimation of the tenure distribution parameters, is then given by (consult the
paper for full derivations):

logL = ln

Z Z
JQ
j=1

F (	j)
1�dj � f(�j)dj

F (�1)I(j=1)
�R 1

0
F (x)dx

�I(j 6=1) d�� e
�

�
d�

�
e�
��

�
(2)

where I (y) is the indicator function, taking value 1 if y is true and 0 other-
wise. We estimate this likelihood above using Simulated Maximum Likelihood
(SML)1 .

1We used simulated maximum likelihood (SML), cf. Stern (1997). Sampling from a joint
normal distribution with mean 0 and variances �2� and �

2

, and using a sampling size of 500

sampling points we achieved strong convergence in a reasonable number of iterations (the
results are robust to any starting values of the parameters, as well as to altering the sampling
dimension to any size between 100 and 500 sampling points). We used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method for convergence of derivatives, allowing for a tolerance of
1E-4 times the absolute value of the log likelihood.
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Using the ML estimates of !0;1; �0;1; �
 and �� from (2) above2 , we can
calculate the conditional expectations and variances of �
� . Expressions for
all these are given in the standard Appendix attached to the paper.
These expressions are then used for the the 2nd estimation, namely that

of the parameters �; 
; �0; �z; and �u by Feasible Generalized Nonlinear Least
Squares (FGNLS), using data on wage changes. As in the paper, the general
system of equations to estimate is the following (as explained in the text, when
estimating we allow for a a second-order polynomial experience pro�le: t; t2; for
brevity and space we do not enter those components below).

�wt = �0 + 
��1S + 
�E�
� + "t (3)

wt � w�t�1 = �0 + 
��1S + 
�E�

�
� + �
0 + �t

�w2t = �2z + 2�
2
u + 


2�2Var�
� + (�0 + 
��1S + 
�E�
� )
2
+ �t�

wt � w�t�1
�2

= �2z + 2�
2
u + 


2�2Var�
�� + (�0 + 
��S + 
�E�

�
� + �
0)

2
+ �t

�wt�wt�1 = ��2u + (�0 + 
��1S + 
�E�
� ) (�0 + 
��1S + 
�E�
��1) + �t

2 Consistent estimation of FGNLS parameters

This system (3) can be written in matrix notation as follows:

y = X (�; �) + u (4)

where y is a vector of the �ve dependent variables, stacked on top of each other; u
is a corresponding vector of error terms, with a di¤erent variance for each of the
�ve components, and cross-equation correlations; � is the vector of parameters
in the current estimation step (the dimension of this vector di¤ers in function
of which variant of nested FGNLS model we use, see paper), and � is the vector
of parameters of the �rst step SML estimation (see earlier footnote) ; X (�; �)
is the matrix of functions of exogenous regressors and parameters. Equation
(4) is estimable by feasible generalized nonlinear least squares (FGNLS). � is
estimated, as standard in this case, as an iterative process: start with a value
of b�, then calculate b�� as

b�� = �X� �b�;b��0X� �b�;b����1X� �b�;b��0 hy �X �b�;b��+X� �b�;b�� b�i
where X� (�; �) is the matrix of partial derivatives of X (�; �) with respect to

�; repeat the procedure using b�� as the new starting point, until b��converges
to b�. This procedure allows the calculation of bu = y �X �b�;b��, which enables
us to compute an estimate of the variances and covariances of each of the �ve
components of u. Let V be the variance-covariance matrix for these error terms.
Then, a consistent estimator for � requires a similar iterative process on b� as

2We keep only four parameters, namely !0;1 and �0;1, as parameters �
 and �� were
estimated to be 0 in the �rst SML stage, see paper.
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above, but using V instead of the identity matrix� as stated in the �rst line
below.

b� =

�
X�

�b�;b��0 V �1X� �b�;b����1X� �b�;b��0 V �1 hy �X �b�;b��+X� �b�;b�� b�i (5)

=

�
X�

�b�;b��0 V �1X� �b�;b����1X� �b�;b��0 V �1 hX (�; �) + u�X �b�;b��+X� �b�;b�� b�i
(p lim) =

�
X�

�b�;b��0 V �1X� �b�;b����1X� �b�;b��0 V �1 hX� �b�;b���� � b��+ u+X� �b�;b�� b�i
=

�
X�

�b�;b��0 V �1X� �b�;b����1X� �b�;b��0 V �1 hX� �b�;b��� + ui)
p lim

�
� � b�� =

�
X�

�b�;b��0 V �1X� �b�;b����1X� �b�;b��0 V �1 hy �X �b�;b��i
Var

�b�jb�� =

�
X�

�b�;b��0 V �1X� �b�;b����1
We further expanded the expression of the estimator for � after the �rst

line in (5), in order to obtain p lim
�
� � b�� in the �fth line, as that will be

useful for our derivation of the correct, two-step adjusted variance, below. In
the third line from above, we applied a Taylor expansion that holds for small
estimation errors; given small errors, we can take the plim (formal notation to
be corrected�but that is easy, e.g. standard in all textbooks).

3 Computing correct variance for the 2nd step
FGNLS parameters

3.1 Murphy-Topel two-step variance adjustment

The variance Var
�b�jb��, estimated in the last line of (5), does not account for

the estimation error introduced by the parameters estimated in the SML analy-
sis from (2), hence assuming � = b� as given. We show below how to do the

required variance adjustment, and thus compute Var
�b��, by using derivations

�rst presented in Newey (1984) and Murphy and Topel (1985). More recent
coverage appears in the books by Wooldridge (2002, Ch.12) and Cameron and
Trivedi (2005, Ch. 6).

For the derivation of the correct variance, Var
�b��, we need to use the es-

timation errors of parameters � in the �rst SML step, � � b�. Denote by V� be
the variance-covariance matrix obtained in the �rst step. An upperbound of the
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correct variance of � can then be derived as follows:

p lim
�
� � b�� =

�
X�

�b�;b��0 V �1X� �b�;b����1X� �b�;b��0 V �1 hy �X �b�;b��+X� �b�;b���� � b��i(6)
Var

�b�� =

�
X�

�b�;b��0 V �1X� �b�;b����1 + �X� �b�;b��0 V �1X� �b�;b����1
X�

�b�;b��0 V �1X� �b�;b��V �1� X 0
�

�b�;b��V �1X� �b�;b���X� �b�;b��0 V �1X� �b�;b����1
In the �rst line of (6) above, we used the �fth line from (5), accounting for

the contribution of the estimation error in that �rst step, X�
�b�;b���� � b��.

Compare Amemiya (1985), section 10.4.3, Murphy and Topel (1985, p. 374-
375), or Cameron and Trivedi (2005, section 6.6).

In practice, the only component we still have to derive for obtaining Var
�b��

in (6) above is the matrix of derivatives X�
�b�;b��. All other components have

been stored while estimating Var
�b�jb�� in (5), while V� comes stored from the

�rst-step SML estimation in the paper.

The derivation of the matrix X�
�b�;b�� involves �rst simplifying the compo-

nents of X�
�b�;b��, and then applying standard numerical di¤erentiation on the

remaining terms.

3.2 Deriving explicit matrix form and simplifyingX�

�b�;b��
We want to �nd the derivative of X with respect to the parameter vector � =2664
�0
�1
!0
!1

3775 : Write again X(�; �) :
�wt = �0 + 
��1S + 
�E�
� + "t

wt � w�t�1 = �0 + 
��1S + 
�E�

�
� + �
0 + �t

�w2t = �2z + 2�
2
u + 


2�2Var�
� + (�0 + 
��1S + 
�E�
� )
2
+ �t�

wt � w�t�1
�2

= �2z + 2�
2
u + 


2�2Var�
�� + (�0 + 
��S + 
�E�

�
� + �
0)

2
+ �t

�wt�wt�1 = ��2u + (�0 + 
��1S + 
�E�
� ) (�0 + 
��1S + 
�E�
��1) + �t

The form of the derivative is a 5x4 matrix (in this case where we use 5 equa-
tions, adjusted accordingly in the speci�cations where we use more equations,
as, e.g., where we allow heterogeneity between movers and non-movers, see pa-
per), where each of the 5 horizontal rows represent blocks of equation-rows in
the data. For clarity and brevity, it is easiest to write this matrix as a block
matrix formed of 4 adjacent column vectors that will contain the derivatives
with respect to each of the 4 components of �:

X�(�; �) =
�
X�0(�; �) X�1(�; �) X!0(�; �) X!1(�; �)

�
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Below we explicitly write down each of these 4 vector components, preparing
them for the �nal format in which they will be computed.
X�0(�; �) =266666666664


� @E�
�@�0


�
@E�
��
@�0


2�2 @Var�
�@�0
+
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
@E�
�
@�0


2�2
@Var�
��

@�0
+
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


� @E�
��
@�0

(�0
� + 
��1S)
�
@E�
��1

@�0
+ @E�
�

@�0

�
+ 
2�2

�
E�
�

@E�
��1
@�0

+ E�
��1 @E�
�@�0

�

377777777775
X�1(�; �) =266666666666666664


�S + 
� @E�
�@�1


��S + 
�
@E�
��
@�1

((
2�2 @Var�
�@�1
+
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
@E�
�
@�1

+

2
2�2�1S
2 + 2�0
�S + 
�

2
SE�
� ))

(
2�2
@Var�
��

@�1
+
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


� @E�
��
@�1

+

2
2�2�1S
2 + 2�0
�S + 
�

2
SE�
�� + �
2
0
S)

((�0
� + 
��1S)
�
@E�
��1

@�1
+ @E�
�

@�1

�
+ 
2�2

�
E�
�

@E�
��1
@�1

+ E�
��1 @E�
�@�1

�
+

2�0
�S + 2

2�2�1S

2 + 
�2S
 (E�
��1 + E�
� ))
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X!0(�; �) =26666666666664


� @E�
�@!0


�
@E�
��
@!0

++� @
0@!0


2�2 @Var�
�@!0
+
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
@E�
�
@!0

(
2�2
@Var�
��

@!0
+
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


� @E�
��
@!0

+�
2�
0 + �

2
E�
�� + 2��0 + 2
�
2�1S

�
@
0
@!0

)

(�0
� + 
��1S)
�
@E�
��1

@!0
+ @E�
�

@!0

�
+ 
2�2

�
E�
�

@E�
��1
@!0

+ E�
��1 @E�
�@!0

�
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X!1(�; �) =26666666666664


� @E�
�@!1


�
@E�
��
@!1

++� @
0@!1


2�2 @Var�
�@!1
+
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
@E�
�
@!1

(
2�2
@Var�
��

@!1
+
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


� @E�
��
@!1

+�
2�
0 + �

2
E�
�� + 2��0 + 2
�
2�1S

�
@
0
@!1

)

(�0
� + 
��1S)
�
@E�
��1

@!1
+ @E�
�

@!1

�
+ 
2�2

�
E�
�

@E�
��1
@!1

+ E�
��1 @E�
�@!1

�
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Observations for further computations:
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First, we can immediately compute @
0
@!0

= @

@!0

= exp(!0 + !1S) = 
; and
@
0
@!1

= @

@!1

= S exp(!0+!1S) = S
. This simpli�es the expressions X!0(�; �)
and X!1(�; �)above.
Next, we need to evaluate all @E�
�

@�0
, @Var�
�

@�0
;
@E�
��
@�1

, @Var�
��
@�1

and re-

spectively @E�
�
@!0

, @Var�
�@!0
;
@E�
��
@!1

, @Var�

�
�

@!1
. Note that all those conditional

expectations and variances are functions of 
 and �, hence we use the chain
rule for the derivations in functions of the components �0; �1; !0 and !1. We
can then write the vectors above as such. For this purpose note that for some
general functions n and m of respectively 
 and �:

@n(�)
@�0

= @n(�)
@�

@�
@�0

= @n(�)
@�

@n(�)
@�1

= @n(�)
@�

@�
@�1

= S @n(�)@�

@m(
)
@!0

= @m(
)
@


@

@!0

= 
@m(
)@

@m(
)
@!1

= @m(
)
@


@

@!1

= S
@m(
)@

Then, the 4 column vector components from above can be written as follows:
X�0(�; �) =266666666664


� @E�
�@�


�
@E�
��
@�


2�2 @Var�
�@� +
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
@E�
�
@�


2�2
@Var�
��

@� +
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


� @E�
��
@�

(�0
� + 
��1S)
�
@E�
��1

@� + @E�
�
@�

�
+ 
2�2

�
E�
�

@E�
��1
@� + E�
��1 @E�
�@�

�
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X�1(�; �) =266666666666666664


�S + 
�S @E�
�@�


��S + 
�S
@E�
��
@�

(
2�2S @Var�
�@� +
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
S @E�
�@� +

2
2�2�1S
2 + 2�0
�S + 
�

2
SE�
� )

(
2�2S
@Var�
��

@� +
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


�
S
@E�
��
@� +

2
2�2�1S
2 + 2�0
�S + 
�

2
SE�
�� + �
2
0
S)

((�0
� + 
��1S)S
�
@E�
��1

@� + @E�
�
@�

�
+ 
2�2S

�
E�
�

@E�
��1
@� + E�
��1 @E�
�@�

�
+

2�0
�S + 2

2�2�1S

2 + 
�2S
 (E�
��1 + E�
� ))
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X!0(�; �) =26666666666664


�
@E�
�@



�

@E�
��
@
 ++�



2�2
@Var�
�@
 +
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�

@E�
�@


(
2�2

@Var�
��

@
 +
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


�


@E�
��
@
 +�

2�
0 + �
2
E�
�� + 2��0 + 2
�

2�1S
�

)

(�0
� + 
��1S)

�
@E�
��1

@
 + @E�
�
@


�
+ 
2�2


�
E�
�

@E�
��1
@
 + E�
��1 @E�
�@


�
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X!1(�; �) =26666666666664


�S
@E�
�@



�S

@E�
��
@
 + �S



2�2S
@Var�
�@
 +
�
2
2�2E�
� + 2�0
� + 
�

2
S�1
�
S
@E�
�@


(
2�2S

@Var�
��

@
 +
�
2
2�2E�
�� + 2�0
� + 
�

2
S�1 + �
2
0


�
S


@E�
��
@
 +�

2�
0 + �
2
E�
�� + 2��0 + 2
�

2�1S
�
S
)

(�0
� + 
��1S)S

�
@E�
��1

@
 + @E�
�
@


�
+ 
2�2S


�
E�
�

@E�
��1
@
 + E�
��1 @E�
�@


�
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3.3 Numerical di¤erentiation

The remaining exercise, given the simpli�cations in the subsection above, is to
evaluate @E�
�

@
 , @E�
�@� , @Var�
�@
 and @Var�
�
@� at the values of the estimated

parameters. With those quantities computed, we can �ll in and store the matrix
of derivatives X�(b�;b�).
In order to obtain the quantities from above, @E�
�@
 , @E�
�@� , @Var�
�@
 and

@Var�
�
@� ;we use numerical di¤erentiation of E�
� and Var�
� with respect to


 and respectively �; we need to do that separately for the completed spells
case, and incomplete spells case, as in the case where we computed E�
� and
Var�
� for the completed and incomplete spells cases in the paper. For the
numerical di¤erentiation, we use a standard forward di¤erence rule for chosen
very small h:

f 0(x) ' lim
h�>0

f(x+ h)� f(x)
h

3.4 Impact of the two-step variance correction

After we perform the numerical di¤erentiations above, we construct X�(b�;b�),
and then we multiply all the relevant matrices as explained in (6) above, we
obtain that only from the 11th decimal digit onwards are the elements in the
FGNLS variance-covariance matrix a¤ected by the adjustment. Hence, although
the exercise of correcting the FGNLS estimated variances for the possible error
in the �rst SML step estimation is required, in the end the practical upshot is
that it does not matter at all. The ex post intuition for this fact is that all but
one of the tenure distribution parameters have been estimated with very small
standard errors in our �rst step, see Table 2, the "Large Sample" panel in our
paper.
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