Web Appendix for Buhai and Teulings (2013):
"Tenure Profiles and Efficient Separation in a
Stochastic Productivity Model"

This version: April 2013

Abstract
This web appendix contains technical notes concerning the estimation
procedures in our paper Buhai and Teulings (2013). We present full details
of our wage-equations system FGNLS estimation— including how to correct
the standard errors of the FGNLS parameter estimates for the variability
of the tenure distribution parameters estimated in the first SML step. In

our context, this two-step variance adjustment turns out not to matter at
all.

1 Summary of our 2-step estimation procedure

The parametric specification we used for the tenure distribution parameters (2,
7, and u, was the following:

Q = exp(wo+wniS+en) 1)
T = mo+mS+ex
fy = o +77 (1S +ex)

where eq and e, are normally distributed, uncorrelated, random worker
effects with mean 0 and standard deviations o and o.

The final log likelihood for the first estimation in the paper, namely the ML
estimation of the tenure distribution parameters, is then given by (consult the
paper for full derivations):

F(U,) % - £(0,)d -
log L = ln//J - J) f( J)> T AP <§_Z) do (;) (2)

(e

where I (y) is the indicator function, taking value 1 if y is true and 0 other-
wise. We estimate this likelihood above using Simulated Maximum Likelihood
(SML)'.

We used simulated maximum likelihood (SML), cf. Stern (1997). Sampling from a joint
normal distribution with mean 0 and variances o2 and a%, and using a sampling size of 500
sampling points we achieved strong convergence in a reasonable number of iterations (the
results are robust to any starting values of the parameters, as well as to altering the sampling
dimension to any size between 100 and 500 sampling points). We used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method for convergence of derivatives, allowing for a tolerance of
1E-4 times the absolute value of the log likelihood.



Using the ML estimates of wq 1,701,000 and o, from (2) above?, we can
calculate the conditional expectations and variances of AS),. Expressions for
all these are given in the standard Appendix attached to the paper.

These expressions are then used for the the 2nd estimation, namely that
of the parameters 7,7, g, 0, and o, by Feasible Generalized Nonlinear Least
Squares (FGNLS), using data on wage changes. As in the paper, the general
system of equations to estimate is the following (as explained in the text, when
estimating we allow for a a second-order polynomial experience profile: ¢, ¢2; for
brevity and space we do not enter those components below).

Aw, = py+yom S +70EAQ, + ¢, (3)
wg—wy_, = g+ 7y S +FoEAQG +7Q + ¢,
Aw? = 02 +202 + 725 VarAQ, + (g +v5m S + JeEAQ,)® + 1,
(we — wZ71)2 = 02+ 202 + 7T VarAQY + (1o + 7o7S + JoBAQE 4+ 5)° + vy
AwiAw;_y = —02 + (g +75m S +FoBEAQ,) (g + 11 S +JoEAQ, 1) + vy

2 Consistent estimation of FGNLS parameters
This system (3) can be written in matrix notation as follows:
y=X(B,0)+u (4)

where ¥ is a vector of the five dependent variables, stacked on top of each other; u
is a corresponding vector of error terms, with a different variance for each of the
five components, and cross-equation correlations; 8 is the vector of parameters
in the current estimation step (the dimension of this vector differs in function
of which variant of nested FGNLS model we use, see paper), and 6 is the vector
of parameters of the first step SML estimation (see earlier footnote) ; X (3, 6)
is the matrix of functions of exogenous regressors and parameters. Equation
(4) is estimable by feasible generalized nonlinear least squares (FGNLS). § is
estimated, as standard in this case, as an iterative process: start with a value
of B, then calculate B* as

7 =[5 6] (6 - 53) 5. 09)2

where X3 (3,6) is the matrix of partial derivatives of X (3, 8) with respect to
B; repeat the procedure using 8 as the new starting point, until 5 converges
to 8. This procedure allows the calculation of u =y — X (6, 9), which enables

us to compute an estimate of the variances and covariances of each of the five
components of u. Let V' be the variance-covariance matrix for these error terms.
Then, a consistent estimator for § requires a similar iterative process on [ as

2We keep only four parameters, namely wo,1 and mo,1, as parameters o and on were
estimated to be 0 in the first SML stage, see paper.



above, but using V instead of the identity matrix— as stated in the first line
below.

()

B - _Xﬁ(a,a)’wlxﬁ(g,a)_ X5 (8.0) v [y - x (3.9) + X5 (5.9) 7]
= [ (Ba) v (39)] X () v [x G v x (30) + X0 (3.9) 7
wim) =[x (30)' Vo (3)] s (39) v %0 (39) (5 B) 4 (30) )
= [ () v (3)] x (3) v [ (3.9) 5]
pim(3-5) =[5 (3:0) v (29)] % (3.9) v - x (39)
vor (A) = [0 (3.9) v (3.9) -

We further expanded the expression of the estimator for § after the first
line in (5), in order to obtain plim (6 — B) in the fifth line, as that will be

useful for our derivation of the correct, two-step adjusted variance, below. In
the third line from above, we applied a Taylor expansion that holds for small
estimation errors; given small errors, we can take the plim (formal notation to
be corrected— but that is easy, e.g. standard in all textbooks).

3 Computing correct variance for the 2nd step
FGNLS parameters

3.1 Murphy-Topel two-step variance adjustment

The variance Var (E\/H\), estimated in the last line of (5), does not account for
the estimation error introduced by the parameters estimated in the SML analy-
sis from (2), hence assuming 6 = 6 as given. We show below how to do the
required variance adjustment, and thus compute Var (B), by using derivations
first presented in Newey (1984) and Murphy and Topel (1985). More recent

coverage appears in the books by Wooldridge (2002, Ch.12) and Cameron and
Trivedi (2005, Ch. 6).

For the derivation of the correct variance, Var (B), we need to use the es-

timation errors of parameters 6 in the first SML step, 6 — 6. Denote by Vg be
the variance-covariance matrix obtained in the first step. An upperbound of the



correct variance of 8 can then be derived as follows:

pim (5-5) = [ (30) v, (3.9)] s (3.9) v [y x (3) + 30 (3:9) (0-9) o)
Var(B) =[x (3.8) v (39) |+ [x0 (5.0) v (59)]

In the first line of (6) above, we used the fifth line from (5), accounting for
the contribution of the estimation error in that first step, Xy (B,@) (0 71/9\)

Compare Amemiya (1985), section 10.4.3, Murphy and Topel (1985, p. 374-
375), or Cameron and Trivedi (2005, section 6.6).

In practice, the only component we still have to derive for obtaining Var (B)
in (6) above is the matrix of derivatives Xy (,/6\,/9\) All other components have

been stored while estimating Var (B@) in (5), while Vy comes stored from the
first-step SML estimation in the paper.
The derivation of the matrix Xy (B,@) involves first simplifying the compo-

nents of Xy (3,5), and then applying standard numerical differentiation on the
remaining terms.
3.2 Deriving explicit matrix form and simplifying X, (ﬁ, 0)

We want to find the derivative of X with respect to the parameter vector 6 =
o

U Write again X (5,0) :
wo
w1
Aw, = py+yomS+JoEAQ, + ¢
wy—wy_q = pg+yomS +FoEAQS +5Q0 + ¢,
Aw? = 02+ 202 + 727 VarAQ, + (g + 7om S + JoBAQ, ) + 1,
(we — w;‘_l)2 = 024202 + 725 VarAQY + (pg + 7o7S + FoBEAQE 4+ 58%)° + vy
AwiAw; y = —02 + (g +75m1 S +JoEAQ,) (g + 7711 S +FJoEAQ, 1) + vy

The form of the derivative is a 5x4 matrix (in this case where we use 5 equa-
tions, adjusted accordingly in the specifications where we use more equations,
as, e.g., where we allow heterogeneity between movers and non-movers, see pa-
per), where each of the 5 horizontal rows represent blocks of equation-rows in
the data. For clarity and brevity, it is easiest to write this matrix as a block
matrix formed of 4 adjacent column vectors that will contain the derivatives
with respect to each of the 4 components of 6.

XO(/BaH) = [ XWO(Bve) Xﬂ-l(ﬁae) Xwo(ﬂve) le(ﬂae) ]



Below we explicitly write down each of these 4 vector components, preparing
them for the final format in which they will be computed.
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First, we can immediately compute agg = f%i = exp(wp + w15) = Q, and

O — 92 — §exp(wopwrS) = S This simplifies the expressions Xwg(3,0)

and le(,é’, Jabove.
ar OEAQYL  OVarAQ:
Next, we need to evaluate all 2E8%= avgﬁm, el “gﬂ © and re-

spectively 8EAQ , BV?)ZAOQT, aEaL;?z", BV%rWAng_ Note that all those conditional
expectations and variances are functions of 2 and 7, hence we use the chain
rule for the derivations in functions of the components mg, 71,wo and w;. We
can then write the vectors above as such. For this purpose note that for some

general functions n and m of respectively 2 and =
on(m) _ an(w)ai _ on(m)

drg ~ Om Omg  Om
on(r) _ On(m) or __ San(ﬂ')
o1~ Om Om on
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o dwl =59Q

Then the 4 column vector components from above can be written as follows:
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3.3 Numerical differentiation

The remaining exercise, given the simplifications in the subsection above, is to
evaluate aEa%QT, aEBAfT, 8V&5£Q* and avbgfm at the values of the estimated
parameters. With those quantities computed, we can fill in and store the matrix
of derivatives Xy (5, 0).

In order to obtain the quantities from above, BEaAQQT, aEaAﬂQT, 8V&5£‘QT and
avag%?we use numerical differentiation of EA, and VarAQ., with respect to
Q and respectively m; we need to do that separately for the completed spells
case, and incomplete spells case, as in the case where we computed EAQ. and
VarAQ),. for the completed and incomplete spells cases in the paper. For the
numerical differentiation, we use a standard forward difference rule for chosen

very small h:

h—>0 h

3.4 Impact of the two-step variance correction

After we perform the numerical differentiations above, we construct Xe(B,/H\),
and then we multiply all the relevant matrices as explained in (6) above, we
obtain that only from the 11th decimal digit onwards are the elements in the
FGNLS variance-covariance matrix affected by the adjustment. Hence, although
the exercise of correcting the FGNLS estimated variances for the possible error
in the first SML step estimation is required, in the end the practical upshot is
that it does not matter at all. The ex post intuition for this fact is that all but
one of the tenure distribution parameters have been estimated with very small
standard errors in our first step, see Table 2, the "Large Sample" panel in our

paper.
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